anyantudre's picture
moved from training repo to inference
caa56d6
# Created by: Kaede Shiohara
# Yamasaki Lab at The University of Tokyo
# [email protected]
# Copyright (c) 2021
# 3rd party softwares' licenses are noticed at https://github.com/mapooon/SelfBlendedImages/blob/master/LICENSE
import logging
import os
import pickle
import cv2
import numpy as np
import scipy as sp
import yaml
from skimage.measure import label, regionprops
import random
from PIL import Image
import sys
import albumentations as A
from torch.utils.data import DataLoader
from dataset.utils.bi_online_generation import random_get_hull
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
from dataset.pair_dataset import pairDataset
import torch
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
def apply(self, img, ratio_list=None, **params):
if ratio_list is None:
ratio_list = [2, 4]
r = ratio_list[np.random.randint(len(ratio_list))]
return self.randomdownscale(img, r)
def randomdownscale(self, img, r):
keep_ratio = True
keep_input_shape = True
H, W, C = img.shape
img_ds = cv2.resize(img, (int(W / r), int(H / r)), interpolation=cv2.INTER_NEAREST)
if keep_input_shape:
img_ds = cv2.resize(img_ds, (W, H), interpolation=cv2.INTER_LINEAR)
return img_ds
'''
from PIL import ImageDraw
# 创建一个可以在图像上绘制的对象
img_pil=Image.fromarray(img)
draw = ImageDraw.Draw(img_pil)
# 在图像上绘制点
for i, point in enumerate(landmark):
x, y = point
radius = 1 # 点的半径
draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill="red")
draw.text((x+radius+2, y-radius), str(i), fill="black") # 在点旁边添加标签
img_pil.show()
'''
def alpha_blend(source, target, mask):
mask_blured = get_blend_mask(mask)
img_blended = (mask_blured * source + (1 - mask_blured) * target)
return img_blended, mask_blured
def dynamic_blend(source, target, mask):
mask_blured = get_blend_mask(mask)
# worth consideration, 1 in the official paper, 0.25, 0.5, 0.75,1,1,1 in sbi.
blend_list = [1, 1, 1]
blend_ratio = blend_list[np.random.randint(len(blend_list))]
mask_blured *= blend_ratio
img_blended = (mask_blured * source + (1 - mask_blured) * target)
return img_blended, mask_blured
def get_blend_mask(mask):
H, W = mask.shape
size_h = np.random.randint(192, 257)
size_w = np.random.randint(192, 257)
mask = cv2.resize(mask, (size_w, size_h))
kernel_1 = random.randrange(5, 26, 2)
kernel_1 = (kernel_1, kernel_1)
kernel_2 = random.randrange(5, 26, 2)
kernel_2 = (kernel_2, kernel_2)
mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
mask_blured = mask_blured / (mask_blured.max())
mask_blured[mask_blured < 1] = 0
mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5, 46))
mask_blured = mask_blured / (mask_blured.max())
mask_blured = cv2.resize(mask_blured, (W, H))
return mask_blured.reshape((mask_blured.shape + (1,)))
def get_alpha_blend_mask(mask):
kernel_list = [(11, 11), (9, 9), (7, 7), (5, 5), (3, 3)]
blend_list = [0.25, 0.5, 0.75]
kernel_idxs = random.choices(range(len(kernel_list)), k=2)
blend_ratio = blend_list[random.sample(range(len(blend_list)), 1)[0]]
mask_blured = cv2.GaussianBlur(mask, kernel_list[0], 0)
# print(mask_blured.max())
mask_blured[mask_blured < mask_blured.max()] = 0
mask_blured[mask_blured > 0] = 1
# mask_blured = mask
mask_blured = cv2.GaussianBlur(mask_blured, kernel_list[kernel_idxs[1]], 0)
mask_blured = mask_blured / (mask_blured.max())
return mask_blured.reshape((mask_blured.shape + (1,)))
class I2GDataset(DeepfakeAbstractBaseDataset):
def __init__(self, config=None, mode='train'):
#config['GridShuffle']['p'] = 0
super().__init__(config, mode)
real_images_list = [img for img, label in zip(self.image_list, self.label_list) if label == 0]
self.real_images_list = list(set(real_images_list)) # de-duplicate since DF,F2F,FS,NT have same real images
self.source_transforms = self.get_source_transforms()
self.transforms = self.get_transforms()
self.init_nearest()
def init_nearest(self):
if os.path.exists('training/lib/nearest_face_info.pkl'):
with open('training/lib/nearest_face_info.pkl', 'rb') as f:
face_info = pickle.load(f)
self.face_info = face_info
# Check if the dictionary has already been created
if os.path.exists('training/lib/landmark_dict_ffall.pkl'):
with open('training/lib/landmark_dict_ffall.pkl', 'rb') as f:
landmark_dict = pickle.load(f)
self.landmark_dict = landmark_dict
def reorder_landmark(self, landmark):
landmark = landmark.copy() # 创建landmark的副本
landmark_add = np.zeros((13, 2))
for idx, idx_l in enumerate([77, 75, 76, 68, 69, 70, 71, 80, 72, 73, 79, 74, 78]):
landmark_add[idx] = landmark[idx_l]
landmark[68:] = landmark_add
return landmark
def hflip(self, img, mask=None, landmark=None, bbox=None):
H, W = img.shape[:2]
landmark = landmark.copy()
if bbox is not None:
bbox = bbox.copy()
if landmark is not None:
landmark_new = np.zeros_like(landmark)
landmark_new[:17] = landmark[:17][::-1]
landmark_new[17:27] = landmark[17:27][::-1]
landmark_new[27:31] = landmark[27:31]
landmark_new[31:36] = landmark[31:36][::-1]
landmark_new[36:40] = landmark[42:46][::-1]
landmark_new[40:42] = landmark[46:48][::-1]
landmark_new[42:46] = landmark[36:40][::-1]
landmark_new[46:48] = landmark[40:42][::-1]
landmark_new[48:55] = landmark[48:55][::-1]
landmark_new[55:60] = landmark[55:60][::-1]
landmark_new[60:65] = landmark[60:65][::-1]
landmark_new[65:68] = landmark[65:68][::-1]
if len(landmark) == 68:
pass
elif len(landmark) == 81:
landmark_new[68:81] = landmark[68:81][::-1]
else:
raise NotImplementedError
landmark_new[:, 0] = W - landmark_new[:, 0]
else:
landmark_new = None
if bbox is not None:
bbox_new = np.zeros_like(bbox)
bbox_new[0, 0] = bbox[1, 0]
bbox_new[1, 0] = bbox[0, 0]
bbox_new[:, 0] = W - bbox_new[:, 0]
bbox_new[:, 1] = bbox[:, 1].copy()
if len(bbox) > 2:
bbox_new[2, 0] = W - bbox[3, 0]
bbox_new[2, 1] = bbox[3, 1]
bbox_new[3, 0] = W - bbox[2, 0]
bbox_new[3, 1] = bbox[2, 1]
bbox_new[4, 0] = W - bbox[4, 0]
bbox_new[4, 1] = bbox[4, 1]
bbox_new[5, 0] = W - bbox[6, 0]
bbox_new[5, 1] = bbox[6, 1]
bbox_new[6, 0] = W - bbox[5, 0]
bbox_new[6, 1] = bbox[5, 1]
else:
bbox_new = None
if mask is not None:
mask = mask[:, ::-1]
else:
mask = None
img = img[:, ::-1].copy()
return img, mask, landmark_new, bbox_new
def get_source_transforms(self):
return A.Compose([
A.Compose([
A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
val_shift_limit=(-0.3, 0.3), p=1),
A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=1),
], p=1),
A.OneOf([
RandomDownScale(p=1),
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
], p=1),
], p=1.)
def get_fg_bg(self, one_lmk_path):
"""
Get foreground and background paths
"""
bg_lmk_path = one_lmk_path
# Randomly pick one from the nearest neighbors for the foreground
if bg_lmk_path in self.face_info:
fg_lmk_path = random.choice(self.face_info[bg_lmk_path])
else:
fg_lmk_path = bg_lmk_path
return fg_lmk_path, bg_lmk_path
def get_transforms(self):
return A.Compose([
A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
val_shift_limit=(-0.3, 0.3), p=0.3),
A.RandomBrightnessContrast(brightness_limit=(-0.3, 0.3), contrast_limit=(-0.3, 0.3), p=0.3),
A.ImageCompression(quality_lower=40, quality_upper=100, p=0.5),
],
additional_targets={f'image1': 'image'},
p=1.)
def randaffine(self, img, mask):
f = A.Affine(
translate_percent={'x': (-0.03, 0.03), 'y': (-0.015, 0.015)},
scale=[0.95, 1 / 0.95],
fit_output=False,
p=1)
g = A.ElasticTransform(
alpha=50,
sigma=7,
alpha_affine=0,
p=1,
)
transformed = f(image=img, mask=mask)
img = transformed['image']
mask = transformed['mask']
transformed = g(image=img, mask=mask)
mask = transformed['mask']
return img, mask
def __len__(self):
return len(self.real_images_list)
def colorTransfer(self, src, dst, mask):
transferredDst = np.copy(dst)
maskIndices = np.where(mask != 0)
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.float32)
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.float32)
# Compute means and standard deviations
meanSrc = np.mean(maskedSrc, axis=0)
stdSrc = np.std(maskedSrc, axis=0)
meanDst = np.mean(maskedDst, axis=0)
stdDst = np.std(maskedDst, axis=0)
# Perform color transfer
maskedDst = (maskedDst - meanDst) * (stdSrc / stdDst) + meanSrc
maskedDst = np.clip(maskedDst, 0, 255)
# Copy the entire background into transferredDst
transferredDst = np.copy(dst)
# Now apply color transfer only to the masked region
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst.astype(np.uint8)
return transferredDst
def two_blending(self, img_bg, img_fg, landmark):
H, W = len(img_bg), len(img_bg[0])
if np.random.rand() < 0.25:
landmark = landmark[:68]
logging.disable(logging.FATAL)
mask = random_get_hull(landmark, img_bg)
logging.disable(logging.NOTSET)
source = img_fg.copy()
target = img_bg.copy()
# if np.random.rand() < 0.5:
# source = self.source_transforms(image=source.astype(np.uint8))['image']
# else:
# target = self.source_transforms(image=target.astype(np.uint8))['image']
source_v2, mask_v2 = self.randaffine(source, mask)
source_v3=self.colorTransfer(target,source_v2,mask_v2)
img_blended, mask = dynamic_blend(source_v3, target, mask_v2)
img_blended = img_blended.astype(np.uint8)
img = img_bg.astype(np.uint8)
return img, img_blended, mask.squeeze(2)
def __getitem__(self, index):
image_path_bg = self.real_images_list[index]
label = 0
# Get the mask and landmark paths
landmark_path_bg = image_path_bg.replace('frames', 'landmarks').replace('.png', '.npy') # Use .npy for landmark
landmark_path_fg, landmark_path_bg = self.get_fg_bg(landmark_path_bg)
image_path_fg = landmark_path_fg.replace('landmarks','frames').replace('.npy','.png')
try:
image_bg = self.load_rgb(image_path_bg)
image_fg = self.load_rgb(image_path_fg)
except Exception as e:
# Skip this image and return the first one
print(f"Error loading image at index {index}: {e}")
return self.__getitem__(0)
image_bg = np.array(image_bg) # Convert to numpy array for data augmentation
image_fg = np.array(image_fg) # Convert to numpy array for data augmentation
landmarks_bg = self.load_landmark(landmark_path_bg)
landmarks_fg = self.load_landmark(landmark_path_fg)
landmarks_bg = np.clip(landmarks_bg, 0, self.config['resolution'] - 1)
landmarks_bg = self.reorder_landmark(landmarks_bg)
img_r, img_f, mask_f = self.two_blending(image_bg.copy(), image_fg.copy(),landmarks_bg.copy())
transformed = self.transforms(image=img_f.astype('uint8'), image1=img_r.astype('uint8'))
img_f = transformed['image']
img_r = transformed['image1']
# img_f = img_f.transpose((2, 0, 1))
# img_r = img_r.transpose((2, 0, 1))
img_f = self.normalize(self.to_tensor(img_f))
img_r = self.normalize(self.to_tensor(img_r))
mask_f = self.to_tensor(mask_f)
mask_r=torch.zeros_like(mask_f) # zeros or ones
return img_f, img_r, mask_f,mask_r
@staticmethod
def collate_fn(batch):
img_f, img_r, mask_f,mask_r = zip(*batch)
data = {}
fake_mask = torch.stack(mask_f,dim=0)
real_mask = torch.stack(mask_r, dim=0)
fake_images = torch.stack(img_f, dim=0)
real_images = torch.stack(img_r, dim=0)
data['image'] = torch.cat([real_images, fake_images], dim=0)
data['label'] = torch.tensor([0] * len(img_r) + [1] * len(img_f))
data['landmark'] = None
data['mask'] = torch.cat([real_mask, fake_mask], dim=0)
return data
if __name__ == '__main__':
detector_path = r"./training/config/detector/xception.yaml"
# weights_path = "./ckpts/xception/CDFv2/tb_v1/ov.pth"
with open(detector_path, 'r') as f:
config = yaml.safe_load(f)
with open('./training/config/train_config.yaml', 'r') as f:
config2 = yaml.safe_load(f)
config2['data_manner'] = 'lmdb'
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
config.update(config2)
dataset = I2GDataset(config=config)
batch_size = 2
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True,collate_fn=dataset.collate_fn)
for i, batch in enumerate(dataloader):
print(f"Batch {i}: {batch}")
continue