anyantudre's picture
moved from training repo to inference
caa56d6
# Created by: Kaede Shiohara
# Yamasaki Lab at The University of Tokyo
# [email protected]
# Copyright (c) 2021
# 3rd party softwares' licenses are noticed at https://github.com/mapooon/SelfBlendedImages/blob/master/LICENSE
import torch
from torchvision import datasets,transforms,utils
from torch.utils.data import Dataset,IterableDataset
from glob import glob
import os
import numpy as np
from PIL import Image
import random
import cv2
from torch import nn
import sys
import scipy as sp
from skimage.measure import label, regionprops
from training.dataset.library.bi_online_generation import random_get_hull
import albumentations as alb
import warnings
warnings.filterwarnings('ignore')
def alpha_blend(source,target,mask):
mask_blured = get_blend_mask(mask)
img_blended=(mask_blured * source + (1 - mask_blured) * target)
return img_blended,mask_blured
def dynamic_blend(source,target,mask):
mask_blured = get_blend_mask(mask)
blend_list=[0.25,0.5,0.75,1,1,1]
blend_ratio = blend_list[np.random.randint(len(blend_list))]
mask_blured*=blend_ratio
img_blended=(mask_blured * source + (1 - mask_blured) * target)
return img_blended,mask_blured
def get_blend_mask(mask):
H,W=mask.shape
size_h=np.random.randint(192,257)
size_w=np.random.randint(192,257)
mask=cv2.resize(mask,(size_w,size_h))
kernel_1=random.randrange(5,26,2)
kernel_1=(kernel_1,kernel_1)
kernel_2=random.randrange(5,26,2)
kernel_2=(kernel_2,kernel_2)
mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
mask_blured = mask_blured/(mask_blured.max())
mask_blured[mask_blured<1]=0
mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5,46))
mask_blured = mask_blured/(mask_blured.max())
mask_blured = cv2.resize(mask_blured,(W,H))
return mask_blured.reshape((mask_blured.shape+(1,)))
def get_alpha_blend_mask(mask):
kernel_list=[(11,11),(9,9),(7,7),(5,5),(3,3)]
blend_list=[0.25,0.5,0.75]
kernel_idxs=random.choices(range(len(kernel_list)), k=2)
blend_ratio = blend_list[random.sample(range(len(blend_list)), 1)[0]]
mask_blured = cv2.GaussianBlur(mask, kernel_list[0], 0)
# print(mask_blured.max())
mask_blured[mask_blured<mask_blured.max()]=0
mask_blured[mask_blured>0]=1
# mask_blured = mask
mask_blured = cv2.GaussianBlur(mask_blured, kernel_list[kernel_idxs[1]], 0)
mask_blured = mask_blured/(mask_blured.max())
return mask_blured.reshape((mask_blured.shape+(1,)))
class RandomDownScale(alb.core.transforms_interface.ImageOnlyTransform):
def apply(self,img,**params):
return self.randomdownscale(img)
def randomdownscale(self,img):
keep_ratio=True
keep_input_shape=True
H,W,C=img.shape
ratio_list=[2,4]
r=ratio_list[np.random.randint(len(ratio_list))]
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
if keep_input_shape:
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
return img_ds
def get_boundary(mask, apply_dilation=True, apply_motion_blur=True):
if len(mask.shape) == 3:
mask = mask[:, :, 0]
mask = cv2.GaussianBlur(mask, (3, 3), 0)
if mask.max() > 1:
boundary = mask / 255.
else:
boundary = mask
boundary = 4 * boundary * (1. - boundary)
boundary = boundary * 255
boundary = random_dilate(boundary)
if apply_motion_blur:
boundary = random_motion_blur(boundary)
boundary = boundary / 255.
return boundary
def random_dilate(mask, max_kernel_size=5):
kernel_size = random.randint(1, max_kernel_size)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
return dilated_mask
def random_motion_blur(mask, max_kernel_size=5):
kernel_size = random.randint(1, max_kernel_size)
kernel = np.zeros((kernel_size, kernel_size))
anchor = random.randint(0, kernel_size - 1)
kernel[:, anchor] = 1 / kernel_size
motion_blurred_mask = cv2.filter2D(mask, -1, kernel)
return motion_blurred_mask
class SBI_API:
def __init__(self,phase='train',image_size=256):
assert phase == 'train', f"Current SBI API only support train phase, but got {phase}"
self.image_size=(image_size,image_size)
self.phase=phase
self.transforms=self.get_transforms()
self.source_transforms = self.get_source_transforms()
self.bob_transforms = self.get_source_transforms_for_bob()
def __call__(self,img,landmark=None):
try:
assert landmark is not None, "landmark of the facial image should not be None."
# img_r,img_f,mask_f=self.self_blending(img.copy(),landmark.copy())
if random.random() < 1.0:
# apply sbi
img_r,img_f,mask_f=self.self_blending(img.copy(),landmark.copy())
else:
# apply boundary motion blur (bob)
img_r,img_f,mask_f=self.bob(img.copy(),landmark.copy())
if self.phase=='train':
transformed=self.transforms(image=img_f.astype('uint8'),image1=img_r.astype('uint8'))
img_f=transformed['image']
img_r=transformed['image1']
return img_f,img_r
except Exception as e:
print(e)
return None,None
def get_source_transforms(self):
return alb.Compose([
alb.Compose([
alb.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
alb.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
alb.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
],p=1),
alb.OneOf([
RandomDownScale(p=1),
alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
],p=1),
], p=1.)
def get_transforms(self):
return alb.Compose([
alb.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
alb.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
alb.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
alb.ImageCompression(quality_lower=40,quality_upper=100,p=0.5),
],
additional_targets={f'image1': 'image'},
p=1.)
def randaffine(self,img,mask):
f=alb.Affine(
translate_percent={'x':(-0.03,0.03),'y':(-0.015,0.015)},
scale=[0.95,1/0.95],
fit_output=False,
p=1)
g=alb.ElasticTransform(
alpha=50,
sigma=7,
alpha_affine=0,
p=1,
)
transformed=f(image=img,mask=mask)
img=transformed['image']
mask=transformed['mask']
transformed=g(image=img,mask=mask)
mask=transformed['mask']
return img,mask
def get_source_transforms_for_bob(self):
return alb.Compose([
alb.Compose([
alb.ImageCompression(quality_lower=40,quality_upper=100,p=1),
],p=1),
alb.OneOf([
RandomDownScale(p=1),
alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
],p=1),
], p=1.)
def bob(self,img,landmark):
H,W=len(img),len(img[0])
if np.random.rand()<0.25:
landmark=landmark[:68]
# mask=np.zeros_like(img[:,:,0])
# cv2.fillConvexPoly(mask, cv2.convexHull(landmark), 1.)
hull_type = random.choice([0, 1, 2, 3])
mask=random_get_hull(landmark,img,hull_type)[:,:,0]
source = img.copy()
source = self.bob_transforms(image=source.astype(np.uint8))['image']
source, mask = self.randaffine(source,mask)
mask = get_blend_mask(mask)
# get boundary with motion blur
boundary = get_boundary(mask)
blend_list = [0.25,0.5,0.75,1,1,1]
blend_ratio = blend_list[np.random.randint(len(blend_list))]
boundary *= blend_ratio
boundary = np.repeat(boundary[:, :, np.newaxis], 3, axis=2)
img_blended = (boundary * source + (1 - boundary) * img)
img_blended = img_blended.astype(np.uint8)
img = img.astype(np.uint8)
return img,img_blended,boundary.squeeze()
def self_blending(self,img,landmark):
H,W=len(img),len(img[0])
if np.random.rand()<0.25:
landmark=landmark[:68]
# mask=np.zeros_like(img[:,:,0])
# cv2.fillConvexPoly(mask, cv2.convexHull(landmark), 1.)
hull_type = random.choice([0, 1, 2, 3])
mask=random_get_hull(landmark,img,hull_type)[:,:,0]
source = img.copy()
if np.random.rand()<0.5:
source = self.source_transforms(image=source.astype(np.uint8))['image']
else:
img = self.source_transforms(image=img.astype(np.uint8))['image']
source, mask = self.randaffine(source,mask)
img_blended,mask=dynamic_blend(source,img,mask)
img_blended = img_blended.astype(np.uint8)
img = img.astype(np.uint8)
return img,img_blended,mask
def reorder_landmark(self,landmark):
landmark_add=np.zeros((13,2))
for idx,idx_l in enumerate([77,75,76,68,69,70,71,80,72,73,79,74,78]):
landmark_add[idx]=landmark[idx_l]
landmark[68:]=landmark_add
return landmark
def hflip(self,img,mask=None,landmark=None,bbox=None):
H,W=img.shape[:2]
landmark=landmark.copy()
if bbox is not None:
bbox=bbox.copy()
if landmark is not None:
landmark_new=np.zeros_like(landmark)
landmark_new[:17]=landmark[:17][::-1]
landmark_new[17:27]=landmark[17:27][::-1]
landmark_new[27:31]=landmark[27:31]
landmark_new[31:36]=landmark[31:36][::-1]
landmark_new[36:40]=landmark[42:46][::-1]
landmark_new[40:42]=landmark[46:48][::-1]
landmark_new[42:46]=landmark[36:40][::-1]
landmark_new[46:48]=landmark[40:42][::-1]
landmark_new[48:55]=landmark[48:55][::-1]
landmark_new[55:60]=landmark[55:60][::-1]
landmark_new[60:65]=landmark[60:65][::-1]
landmark_new[65:68]=landmark[65:68][::-1]
if len(landmark)==68:
pass
elif len(landmark)==81:
landmark_new[68:81]=landmark[68:81][::-1]
else:
raise NotImplementedError
landmark_new[:,0]=W-landmark_new[:,0]
else:
landmark_new=None
if bbox is not None:
bbox_new=np.zeros_like(bbox)
bbox_new[0,0]=bbox[1,0]
bbox_new[1,0]=bbox[0,0]
bbox_new[:,0]=W-bbox_new[:,0]
bbox_new[:,1]=bbox[:,1].copy()
if len(bbox)>2:
bbox_new[2,0]=W-bbox[3,0]
bbox_new[2,1]=bbox[3,1]
bbox_new[3,0]=W-bbox[2,0]
bbox_new[3,1]=bbox[2,1]
bbox_new[4,0]=W-bbox[4,0]
bbox_new[4,1]=bbox[4,1]
bbox_new[5,0]=W-bbox[6,0]
bbox_new[5,1]=bbox[6,1]
bbox_new[6,0]=W-bbox[5,0]
bbox_new[6,1]=bbox[5,1]
else:
bbox_new=None
if mask is not None:
mask=mask[:,::-1]
else:
mask=None
img=img[:,::-1].copy()
return img,mask,landmark_new,bbox_new
if __name__=='__main__':
seed=10
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
api=SBI_API(phase='train',image_size=256)
img_path = 'FaceForensics++/original_sequences/youtube/c23/frames/000/000.png'
img = cv2.imread(img_path)
landmark_path = img_path.replace('frames', 'landmarks').replace('png', 'npy')
landmark = np.load(landmark_path)
sbi_img, ori_img = api(img, landmark)