anyantudre's picture
moved from training repo to inference
caa56d6
import numpy as np
import cv2
# from core import randomex
def random_normal(size=(1,), trunc_val=2.5):
len = np.array(size).prod()
result = np.empty((len,), dtype=np.float32)
for i in range(len):
while True:
x = np.random.normal()
if x >= -trunc_val and x <= trunc_val:
break
result[i] = (x / trunc_val)
return result.reshape(size)
def gen_warp_params(w, flip, rotation_range=[-10, 10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None):
if rnd_state is None:
rnd_state = np.random
rotation = rnd_state.uniform(rotation_range[0], rotation_range[1])
scale = rnd_state.uniform(1 + scale_range[0], 1 + scale_range[1])
tx = rnd_state.uniform(tx_range[0], tx_range[1])
ty = rnd_state.uniform(ty_range[0], ty_range[1])
p_flip = flip and rnd_state.randint(10) < 4
# random warp by grid
cell_size = [w // (2**i) for i in range(1, 4)][rnd_state.randint(3)]
cell_count = w // cell_size + 1
grid_points = np.linspace(0, w, cell_count)
mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy()
mapy = mapx.T
mapx[1:-1, 1:-1] = mapx[1:-1, 1:-1] + \
random_normal(
size=(cell_count-2, cell_count-2))*(cell_size*0.24)
mapy[1:-1, 1:-1] = mapy[1:-1, 1:-1] + \
random_normal(
size=(cell_count-2, cell_count-2))*(cell_size*0.24)
half_cell_size = cell_size // 2
mapx = cv2.resize(mapx, (w+cell_size,)*2)[
half_cell_size:-half_cell_size-1, half_cell_size:-half_cell_size-1].astype(np.float32)
mapy = cv2.resize(mapy, (w+cell_size,)*2)[
half_cell_size:-half_cell_size-1, half_cell_size:-half_cell_size-1].astype(np.float32)
# random transform
random_transform_mat = cv2.getRotationMatrix2D(
(w // 2, w // 2), rotation, scale)
random_transform_mat[:, 2] += (tx*w, ty*w)
params = dict()
params['mapx'] = mapx
params['mapy'] = mapy
params['rmat'] = random_transform_mat
params['w'] = w
params['flip'] = p_flip
return params
def warp_by_params(params, img, can_warp, can_transform, can_flip, border_replicate, cv2_inter=cv2.INTER_CUBIC):
if can_warp:
img = cv2.remap(img, params['mapx'], params['mapy'], cv2_inter)
if can_transform:
img = cv2.warpAffine(img, params['rmat'], (params['w'], params['w']), borderMode=(
cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2_inter)
if len(img.shape) == 2:
img = img[..., None]
if can_flip and params['flip']:
img = img[:, ::-1, ...]
return img
from skimage.transform import PiecewiseAffineTransform, warp
def random_deform(imageSize, nrows, ncols, mean=0, std=5):
try:
h, w, c = imageSize
except:
h, w = imageSize
c = 1
rows = np.linspace(0, h, nrows).astype(np.int32)
cols = np.linspace(0, w, ncols).astype(np.int32)
rows, cols = np.meshgrid(rows, cols)
anchors = np.vstack([rows.flat, cols.flat]).T
assert anchors.shape[1] == 2 and anchors.shape[0] == ncols * nrows
deformed = anchors + np.random.normal(mean, std, size=anchors.shape)
#print(anchors)
#print(deformed)
np.clip(deformed[:,0], 0, h-1, deformed[:,0])
np.clip(deformed[:,1], 0, w-1, deformed[:,1])
return anchors.astype(np.float32), deformed.astype(np.float32)
def piecewise_affine_transform(image, srcAnchor, tgtAnchor):
trans = PiecewiseAffineTransform()
trans.estimate(srcAnchor, tgtAnchor)
# tform.estimate(from_.astype(np.float32), to_.astype(
# np.float32)) # tform.estimate(from_, to_)
# M = tform.params[0:2, :]
warped = warp(image, trans)
return warped
def warp_mask(mask, std):
ach, tgt_ach = random_deform(mask.shape, 4, 4, std=std)
warped_mask = piecewise_affine_transform(mask, ach, tgt_ach)
return (warped_mask*255).astype(np.uint8)