|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import cv2
|
|
from PIL import Image
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
import argparse
|
|
|
|
|
|
class SRMConv2d(nn.Module):
|
|
|
|
def __init__(self, learnable=False):
|
|
super(SRMConv2d, self).__init__()
|
|
self.weight = nn.Parameter(torch.Tensor(30, 3, 5, 5),
|
|
requires_grad=learnable)
|
|
self.bias = nn.Parameter(torch.Tensor(30), \
|
|
requires_grad=learnable)
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self):
|
|
SRM_npy = np.load('lib/component/SRM_Kernels.npy')
|
|
|
|
SRM_npy = np.repeat(SRM_npy, 3, axis=1)
|
|
|
|
self.weight.data.numpy()[:] = SRM_npy
|
|
self.bias.data.zero_()
|
|
|
|
def forward(self, input):
|
|
return F.conv2d(input, self.weight, stride=1, padding=2)
|
|
|
|
|
|
|
|
class SRMConv2d_simple(nn.Module):
|
|
|
|
def __init__(self, inc=3, learnable=False):
|
|
super(SRMConv2d_simple, self).__init__()
|
|
self.truc = nn.Hardtanh(-3, 3)
|
|
kernel = self._build_kernel(inc)
|
|
self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
|
|
|
|
|
|
def forward(self, x):
|
|
'''
|
|
x: imgs (Batch, H, W, 3)
|
|
'''
|
|
out = F.conv2d(x, self.kernel, stride=1, padding=2)
|
|
out = self.truc(out)
|
|
|
|
return out
|
|
|
|
def _build_kernel(self, inc):
|
|
|
|
filter1 = [[0, 0, 0, 0, 0],
|
|
[0, -1, 2, -1, 0],
|
|
[0, 2, -4, 2, 0],
|
|
[0, -1, 2, -1, 0],
|
|
[0, 0, 0, 0, 0]]
|
|
|
|
filter2 = [[-1, 2, -2, 2, -1],
|
|
[2, -6, 8, -6, 2],
|
|
[-2, 8, -12, 8, -2],
|
|
[2, -6, 8, -6, 2],
|
|
[-1, 2, -2, 2, -1]]
|
|
|
|
filter3 = [[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 1, -2, 1, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
filter1 = np.asarray(filter1, dtype=float) / 4.
|
|
filter2 = np.asarray(filter2, dtype=float) / 12.
|
|
filter3 = np.asarray(filter3, dtype=float) / 2.
|
|
|
|
filters = [[filter1],
|
|
[filter2],
|
|
[filter3]]
|
|
filters = np.array(filters)
|
|
filters = np.repeat(filters, inc, axis=1)
|
|
filters = torch.FloatTensor(filters)
|
|
return filters
|
|
|
|
class SRMConv2d_Separate(nn.Module):
|
|
|
|
def __init__(self, inc, outc, learnable=False):
|
|
super(SRMConv2d_Separate, self).__init__()
|
|
self.inc = inc
|
|
self.truc = nn.Hardtanh(-3, 3)
|
|
kernel = self._build_kernel(inc)
|
|
self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
|
|
|
|
self.out_conv = nn.Sequential(
|
|
nn.Conv2d(3*inc, outc, 1, 1, 0, 1, 1, bias=False),
|
|
nn.BatchNorm2d(outc),
|
|
nn.ReLU(inplace=True)
|
|
)
|
|
|
|
for ly in self.out_conv.children():
|
|
if isinstance(ly, nn.Conv2d):
|
|
nn.init.kaiming_normal_(ly.weight, a=1)
|
|
|
|
def forward(self, x):
|
|
'''
|
|
x: imgs (Batch,inc, H, W)
|
|
kernel: (outc,inc,kH,kW)
|
|
'''
|
|
out = F.conv2d(x, self.kernel, stride=1, padding=2, groups=self.inc)
|
|
out = self.truc(out)
|
|
out = self.out_conv(out)
|
|
|
|
return out
|
|
|
|
def _build_kernel(self, inc):
|
|
|
|
filter1 = [[0, 0, 0, 0, 0],
|
|
[0, -1, 2, -1, 0],
|
|
[0, 2, -4, 2, 0],
|
|
[0, -1, 2, -1, 0],
|
|
[0, 0, 0, 0, 0]]
|
|
|
|
filter2 = [[-1, 2, -2, 2, -1],
|
|
[2, -6, 8, -6, 2],
|
|
[-2, 8, -12, 8, -2],
|
|
[2, -6, 8, -6, 2],
|
|
[-1, 2, -2, 2, -1]]
|
|
|
|
filter3 = [[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 1, -2, 1, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
filter1 = np.asarray(filter1, dtype=float) / 4.
|
|
filter2 = np.asarray(filter2, dtype=float) / 12.
|
|
filter3 = np.asarray(filter3, dtype=float) / 2.
|
|
|
|
filters = [[filter1],
|
|
[filter2],
|
|
[filter3]]
|
|
filters = np.array(filters)
|
|
|
|
filters = np.repeat(filters, inc, axis=0)
|
|
filters = torch.FloatTensor(filters)
|
|
|
|
return filters
|
|
|
|
|
|
if __name__ == "__main__":
|
|
im = cv2.imread('E:\SRM\component\FF-F2F_0.png')
|
|
im_ten = im/255*2-1
|
|
im_ten = torch.from_numpy(im_ten).unsqueeze(0).permute(0, 3, 1, 2).float()
|
|
|
|
srm_conv = SRMConv2d_simple(inc=3)
|
|
srm_conv1 = SRMConv2d_Separate(inc=3, outc=3)
|
|
|
|
srm = srm_conv(im_ten)
|
|
print(srm.size())
|
|
|
|
def t2im(t):
|
|
|
|
|
|
t = t*255
|
|
im = t.squeeze().detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8)
|
|
return im
|
|
|
|
cv2.imshow('ori', im)
|
|
cv2.imshow('srm', t2im(srm))
|
|
cv2.imshow('srm1', t2im(srm_conv1(im_ten)))
|
|
|
|
|
|
cv2.waitKey()
|
|
|
|
|
|
|