|
'''
|
|
# author: Zhiyuan Yan
|
|
# email: [email protected]
|
|
# date: 2023-0706
|
|
|
|
The code is mainly modified from GitHub link below:
|
|
https://github.com/ondyari/FaceForensics/blob/master/classification/network/xception.py
|
|
'''
|
|
|
|
import os
|
|
import argparse
|
|
import logging
|
|
|
|
import math
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import torch.utils.model_zoo as model_zoo
|
|
from torch.nn import init
|
|
from typing import Union
|
|
from metrics.registry import BACKBONE
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
class SeparableConv2d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
|
|
super(SeparableConv2d, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size,
|
|
stride, padding, dilation, groups=in_channels, bias=bias)
|
|
self.pointwise = nn.Conv2d(
|
|
in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.pointwise(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
|
|
super(Block, self).__init__()
|
|
|
|
if out_filters != in_filters or strides != 1:
|
|
self.skip = nn.Conv2d(in_filters, out_filters,
|
|
1, stride=strides, bias=False)
|
|
self.skipbn = nn.BatchNorm2d(out_filters)
|
|
else:
|
|
self.skip = None
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
rep = []
|
|
|
|
filters = in_filters
|
|
if grow_first:
|
|
rep.append(self.relu)
|
|
rep.append(SeparableConv2d(in_filters, out_filters,
|
|
3, stride=1, padding=1, bias=False))
|
|
rep.append(nn.BatchNorm2d(out_filters))
|
|
filters = out_filters
|
|
|
|
for i in range(reps-1):
|
|
rep.append(self.relu)
|
|
rep.append(SeparableConv2d(filters, filters,
|
|
3, stride=1, padding=1, bias=False))
|
|
rep.append(nn.BatchNorm2d(filters))
|
|
|
|
if not grow_first:
|
|
rep.append(self.relu)
|
|
rep.append(SeparableConv2d(in_filters, out_filters,
|
|
3, stride=1, padding=1, bias=False))
|
|
rep.append(nn.BatchNorm2d(out_filters))
|
|
|
|
if not start_with_relu:
|
|
rep = rep[1:]
|
|
else:
|
|
rep[0] = nn.ReLU(inplace=False)
|
|
|
|
if strides != 1:
|
|
rep.append(nn.MaxPool2d(3, strides, 1))
|
|
self.rep = nn.Sequential(*rep)
|
|
|
|
def forward(self, inp):
|
|
x = self.rep(inp)
|
|
|
|
if self.skip is not None:
|
|
skip = self.skip(inp)
|
|
skip = self.skipbn(skip)
|
|
else:
|
|
skip = inp
|
|
|
|
x += skip
|
|
return x
|
|
|
|
def add_gaussian_noise(ins, mean=0, stddev=0.2):
|
|
noise = ins.data.new(ins.size()).normal_(mean, stddev)
|
|
return ins + noise
|
|
|
|
|
|
@BACKBONE.register_module(module_name="xception")
|
|
class Xception(nn.Module):
|
|
"""
|
|
Xception optimized for the ImageNet dataset, as specified in
|
|
https://arxiv.org/pdf/1610.02357.pdf
|
|
"""
|
|
|
|
def __init__(self, xception_config):
|
|
""" Constructor
|
|
Args:
|
|
xception_config: configuration file with the dict format
|
|
"""
|
|
super(Xception, self).__init__()
|
|
self.num_classes = xception_config["num_classes"]
|
|
self.mode = xception_config["mode"]
|
|
inc = xception_config["inc"]
|
|
dropout = xception_config["dropout"]
|
|
|
|
|
|
self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
|
|
|
|
self.bn1 = nn.BatchNorm2d(32)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(64)
|
|
|
|
|
|
self.block1 = Block(
|
|
64, 128, 2, 2, start_with_relu=False, grow_first=True)
|
|
self.block2 = Block(
|
|
128, 256, 2, 2, start_with_relu=True, grow_first=True)
|
|
self.block3 = Block(
|
|
256, 728, 2, 2, start_with_relu=True, grow_first=True)
|
|
|
|
|
|
self.block4 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block5 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block6 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block7 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
|
|
self.block8 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block9 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block10 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block11 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
|
|
|
|
self.block12 = Block(
|
|
728, 1024, 2, 2, start_with_relu=True, grow_first=False)
|
|
|
|
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
|
|
self.bn3 = nn.BatchNorm2d(1536)
|
|
|
|
|
|
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
|
|
self.bn4 = nn.BatchNorm2d(2048)
|
|
|
|
final_channel = 2048
|
|
if self.mode == 'adjust_channel_iid':
|
|
final_channel = 512
|
|
self.mode = 'adjust_channel'
|
|
self.last_linear = nn.Linear(final_channel, self.num_classes)
|
|
if dropout:
|
|
self.last_linear = nn.Sequential(
|
|
nn.Dropout(p=dropout),
|
|
nn.Linear(final_channel, self.num_classes)
|
|
)
|
|
|
|
self.adjust_channel = nn.Sequential(
|
|
nn.Conv2d(2048, 512, 1, 1),
|
|
nn.BatchNorm2d(512),
|
|
nn.ReLU(inplace=False),
|
|
)
|
|
|
|
def fea_part1_0(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
def fea_part1_1(self, x):
|
|
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
def fea_part1(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
def fea_part2(self, x):
|
|
x = self.block1(x)
|
|
x = self.block2(x)
|
|
x = self.block3(x)
|
|
|
|
return x
|
|
|
|
def fea_part3(self, x):
|
|
if self.mode == "shallow_xception":
|
|
return x
|
|
else:
|
|
x = self.block4(x)
|
|
x = self.block5(x)
|
|
x = self.block6(x)
|
|
x = self.block7(x)
|
|
return x
|
|
|
|
def fea_part4(self, x):
|
|
if self.mode == "shallow_xception":
|
|
x = self.block12(x)
|
|
else:
|
|
x = self.block8(x)
|
|
x = self.block9(x)
|
|
x = self.block10(x)
|
|
x = self.block11(x)
|
|
x = self.block12(x)
|
|
return x
|
|
|
|
def fea_part5(self, x):
|
|
x = self.conv3(x)
|
|
x = self.bn3(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.conv4(x)
|
|
x = self.bn4(x)
|
|
|
|
return x
|
|
|
|
def features(self, input):
|
|
x = self.fea_part1(input)
|
|
|
|
x = self.fea_part2(x)
|
|
x = self.fea_part3(x)
|
|
x = self.fea_part4(x)
|
|
|
|
x = self.fea_part5(x)
|
|
|
|
if self.mode == 'adjust_channel':
|
|
x = self.adjust_channel(x)
|
|
|
|
return x
|
|
|
|
def classifier(self, features,id_feat=None):
|
|
|
|
if self.mode == 'adjust_channel':
|
|
x = features
|
|
else:
|
|
x = self.relu(features)
|
|
|
|
if len(x.shape) == 4:
|
|
x = F.adaptive_avg_pool2d(x, (1, 1))
|
|
x = x.view(x.size(0), -1)
|
|
self.last_emb = x
|
|
|
|
if id_feat!=None:
|
|
out = self.last_linear(x-id_feat)
|
|
else:
|
|
out = self.last_linear(x)
|
|
return out
|
|
|
|
def forward(self, input):
|
|
x = self.features(input)
|
|
out = self.classifier(x)
|
|
return out, x
|
|
|