anyantudre's picture
moved from training repo to inference
caa56d6
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
The code is mainly modified from GitHub link below:
https://github.com/ondyari/FaceForensics/blob/master/classification/network/xception.py
'''
import os
import argparse
import logging
import math
import torch
# import pretrainedmodels
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from torch.nn import init
from typing import Union
from metrics.registry import BACKBONE
logger = logging.getLogger(__name__)
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
super(SeparableConv2d, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size,
stride, padding, dilation, groups=in_channels, bias=bias)
self.pointwise = nn.Conv2d(
in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)
def forward(self, x):
x = self.conv1(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
super(Block, self).__init__()
if out_filters != in_filters or strides != 1:
self.skip = nn.Conv2d(in_filters, out_filters,
1, stride=strides, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip = None
self.relu = nn.ReLU(inplace=True)
rep = []
filters = in_filters
if grow_first: # whether the number of filters grows first
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters, out_filters,
3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters
for i in range(reps-1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters, filters,
3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(filters))
if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters, out_filters,
3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(out_filters))
if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)
if strides != 1:
rep.append(nn.MaxPool2d(3, strides, 1))
self.rep = nn.Sequential(*rep)
def forward(self, inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp
x += skip
return x
def add_gaussian_noise(ins, mean=0, stddev=0.2):
noise = ins.data.new(ins.size()).normal_(mean, stddev)
return ins + noise
@BACKBONE.register_module(module_name="xception")
class Xception(nn.Module):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""
def __init__(self, xception_config):
""" Constructor
Args:
xception_config: configuration file with the dict format
"""
super(Xception, self).__init__()
self.num_classes = xception_config["num_classes"]
self.mode = xception_config["mode"]
inc = xception_config["inc"]
dropout = xception_config["dropout"]
# Entry flow
self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
self.bn2 = nn.BatchNorm2d(64)
# do relu here
self.block1 = Block(
64, 128, 2, 2, start_with_relu=False, grow_first=True)
self.block2 = Block(
128, 256, 2, 2, start_with_relu=True, grow_first=True)
self.block3 = Block(
256, 728, 2, 2, start_with_relu=True, grow_first=True)
# middle flow
self.block4 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block5 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block6 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block7 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block8 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block9 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block10 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block11 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
# Exit flow
self.block12 = Block(
728, 1024, 2, 2, start_with_relu=True, grow_first=False)
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
self.bn3 = nn.BatchNorm2d(1536)
# do relu here
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(2048)
# used for iid
final_channel = 2048
if self.mode == 'adjust_channel_iid':
final_channel = 512
self.mode = 'adjust_channel'
self.last_linear = nn.Linear(final_channel, self.num_classes)
if dropout:
self.last_linear = nn.Sequential(
nn.Dropout(p=dropout),
nn.Linear(final_channel, self.num_classes)
)
self.adjust_channel = nn.Sequential(
nn.Conv2d(2048, 512, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=False),
)
def fea_part1_0(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return x
def fea_part1_1(self, x):
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
return x
def fea_part1(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
return x
def fea_part2(self, x):
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
return x
def fea_part3(self, x):
if self.mode == "shallow_xception":
return x
else:
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
return x
def fea_part4(self, x):
if self.mode == "shallow_xception":
x = self.block12(x)
else:
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
return x
def fea_part5(self, x):
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
return x
def features(self, input):
x = self.fea_part1(input)
x = self.fea_part2(x)
x = self.fea_part3(x)
x = self.fea_part4(x)
x = self.fea_part5(x)
if self.mode == 'adjust_channel':
x = self.adjust_channel(x)
return x
def classifier(self, features,id_feat=None):
# for iid
if self.mode == 'adjust_channel':
x = features
else:
x = self.relu(features)
if len(x.shape) == 4:
x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
self.last_emb = x
# for iid
if id_feat!=None:
out = self.last_linear(x-id_feat)
else:
out = self.last_linear(x)
return out
def forward(self, input):
x = self.features(input)
out = self.classifier(x)
return out, x