|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import os |
|
import sys |
|
|
|
class SeparableConv2d(nn.Module): |
|
def __init__(self, c_in, c_out, ks, stride=1, padding=0, dilation=1, bias=False): |
|
super(SeparableConv2d, self).__init__() |
|
self.c = nn.Conv2d(c_in, c_in, ks, stride, padding, dilation, groups=c_in, bias=bias) |
|
self.pointwise = nn.Conv2d(c_in, c_out, 1, 1, 0, 1, 1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.c(x) |
|
x = self.pointwise(x) |
|
return x |
|
|
|
class Block(nn.Module): |
|
def __init__(self, c_in, c_out, reps, stride=1, start_with_relu=True, grow_first=True): |
|
super(Block, self).__init__() |
|
|
|
self.skip = None |
|
self.skip_bn = None |
|
if c_out != c_in or stride!= 1: |
|
self.skip = nn.Conv2d(c_in, c_out, 1, stride=stride, bias=False) |
|
self.skip_bn = nn.BatchNorm2d(c_out) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
rep = [] |
|
c = c_in |
|
if grow_first: |
|
rep.append(self.relu) |
|
rep.append(SeparableConv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)) |
|
rep.append(nn.BatchNorm2d(c_out)) |
|
c = c_out |
|
|
|
for i in range(reps - 1): |
|
rep.append(self.relu) |
|
rep.append(SeparableConv2d(c, c, 3, stride=1, padding=1, bias=False)) |
|
rep.append(nn.BatchNorm2d(c)) |
|
|
|
if not grow_first: |
|
rep.append(self.relu) |
|
rep.append(SeparableConv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)) |
|
rep.append(nn.BatchNorm2d(c_out)) |
|
|
|
if not start_with_relu: |
|
rep = rep[1:] |
|
else: |
|
rep[0] = nn.ReLU(inplace=False) |
|
|
|
if stride != 1: |
|
rep.append(nn.MaxPool2d(3, stride, 1)) |
|
self.rep = nn.Sequential(*rep) |
|
|
|
def forward(self, inp): |
|
x = self.rep(inp) |
|
|
|
if self.skip is not None: |
|
y = self.skip(inp) |
|
y = self.skip_bn(y) |
|
else: |
|
y = inp |
|
|
|
x += y |
|
return x |
|
|
|
class RegressionMap(nn.Module): |
|
def __init__(self, c_in): |
|
super(RegressionMap, self).__init__() |
|
self.c = SeparableConv2d(c_in, 1, 3, stride=1, padding=1, bias=False) |
|
self.s = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
mask = self.c(x) |
|
mask = self.s(mask) |
|
return mask, None |
|
|
|
class TemplateMap(nn.Module): |
|
def __init__(self, c_in, templates): |
|
super(TemplateMap, self).__init__() |
|
self.c = Block(c_in, 364, 2, 2, start_with_relu=True, grow_first=False) |
|
self.l = nn.Linear(364, 10) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.templates = templates |
|
|
|
def forward(self, x): |
|
v = self.c(x) |
|
v = self.relu(v) |
|
v = F.adaptive_avg_pool2d(v, (1,1)) |
|
v = v.view(v.size(0), -1) |
|
v = self.l(v) |
|
mask = torch.mm(v, self.templates.reshape(10,361)) |
|
mask = mask.reshape(x.shape[0], 1, 19, 19) |
|
|
|
return mask, v |
|
|
|
class PCATemplateMap(nn.Module): |
|
def __init__(self, templates): |
|
super(PCATemplateMap, self).__init__() |
|
self.templates = templates |
|
|
|
def forward(self, x): |
|
fe = x.view(x.shape[0], x.shape[1], x.shape[2]*x.shape[3]) |
|
fe = torch.transpose(fe, 1, 2) |
|
mu = torch.mean(fe, 2, keepdim=True) |
|
fea_diff = fe - mu |
|
|
|
cov_fea = torch.bmm(fea_diff, torch.transpose(fea_diff, 1, 2)) |
|
B = self.templates.reshape(1, 10, 361).repeat(x.shape[0], 1, 1) |
|
D = torch.bmm(torch.bmm(B, cov_fea), torch.transpose(B, 1, 2)) |
|
eigen_value, eigen_vector = D.symeig(eigenvectors=True) |
|
index = torch.tensor([9]).cuda() |
|
eigen = torch.index_select(eigen_vector, 2, index) |
|
|
|
v = eigen.squeeze(-1) |
|
mask = torch.mm(v, self.templates.reshape(10, 361)) |
|
mask = mask.reshape(x.shape[0], 1, 19, 19) |
|
return mask, v |
|
|
|
class Xception(nn.Module): |
|
""" |
|
Xception optimized for the ImageNet dataset, as specified in |
|
https://arxiv.org/pdf/1610.02357.pdf |
|
""" |
|
def __init__(self, maptype, templates, num_classes=1000): |
|
super(Xception, self).__init__() |
|
self.num_classes = num_classes |
|
|
|
self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.conv2 = nn.Conv2d(32,64,3,bias=False) |
|
self.bn2 = nn.BatchNorm2d(64) |
|
|
|
self.block1=Block(64,128,2,2,start_with_relu=False,grow_first=True) |
|
self.block2=Block(128,256,2,2,start_with_relu=True,grow_first=True) |
|
self.block3=Block(256,728,2,2,start_with_relu=True,grow_first=True) |
|
self.block4=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block5=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block6=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block7=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block8=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block9=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block10=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block11=Block(728,728,3,1,start_with_relu=True,grow_first=True) |
|
self.block12=Block(728,1024,2,2,start_with_relu=True,grow_first=False) |
|
|
|
self.conv3 = SeparableConv2d(1024,1536,3,1,1) |
|
self.bn3 = nn.BatchNorm2d(1536) |
|
|
|
self.conv4 = SeparableConv2d(1536,2048,3,1,1) |
|
self.bn4 = nn.BatchNorm2d(2048) |
|
|
|
self.last_linear = nn.Linear(2048, num_classes) |
|
|
|
if maptype == 'none': |
|
self.map = [1, None] |
|
elif maptype == 'reg': |
|
self.map = RegressionMap(728) |
|
elif maptype == 'tmp': |
|
self.map = TemplateMap(728, templates) |
|
elif maptype == 'pca_tmp': |
|
self.map = PCATemplateMap(728) |
|
else: |
|
print('Unknown map type: `{0}`'.format(maptype)) |
|
sys.exit() |
|
|
|
def features(self, input): |
|
x = self.conv1(input) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
|
|
x = self.block1(x) |
|
x = self.block2(x) |
|
x = self.block3(x) |
|
x = self.block4(x) |
|
x = self.block5(x) |
|
x = self.block6(x) |
|
x = self.block7(x) |
|
mask, vec = self.map(x) |
|
x = x * mask |
|
x = self.block8(x) |
|
x = self.block9(x) |
|
x = self.block10(x) |
|
x = self.block11(x) |
|
x = self.block12(x) |
|
x = self.conv3(x) |
|
x = self.bn3(x) |
|
x = self.relu(x) |
|
|
|
x = self.conv4(x) |
|
x = self.bn4(x) |
|
return x, mask, vec |
|
|
|
def logits(self, features): |
|
x = self.relu(features) |
|
x = F.adaptive_avg_pool2d(x, (1, 1)) |
|
x = x.view(x.size(0), -1) |
|
x = self.last_linear(x) |
|
return x |
|
|
|
def forward(self, input): |
|
x, mask, vec = self.features(input) |
|
x = self.logits(x) |
|
return x, mask, vec |
|
|
|
def init_weights(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('SeparableConv2d') != -1: |
|
m.c.weight.data.normal_(0.0, 0.01) |
|
if m.c.bias is not None: |
|
m.c.bias.data.fill_(0) |
|
m.pointwise.weight.data.normal_(0.0, 0.01) |
|
if m.pointwise.bias is not None: |
|
m.pointwise.bias.data.fill_(0) |
|
elif classname.find('Conv') != -1 or classname.find('Linear') != -1: |
|
m.weight.data.normal_(0.0, 0.01) |
|
if m.bias is not None: |
|
m.bias.data.fill_(0) |
|
elif classname.find('BatchNorm') != -1: |
|
m.weight.data.normal_(1.0, 0.01) |
|
m.bias.data.fill_(0) |
|
elif classname.find('LSTM') != -1: |
|
for i in m._parameters: |
|
if i.__class__.__name__.find('weight') != -1: |
|
i.data.normal_(0.0, 0.01) |
|
elif i.__class__.__name__.find('bias') != -1: |
|
i.bias.data.fill_(0) |
|
|
|
class Model: |
|
def __init__(self, maptype='None', templates=None, num_classes=2, load_pretrain=True): |
|
model = Xception(maptype, templates, num_classes=num_classes) |
|
if load_pretrain: |
|
state_dict = torch.load('./xception-b5690688.pth') |
|
for name, weights in state_dict: |
|
if 'pointwise' in name: |
|
state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1) |
|
del state_dict['fc.weight'] |
|
del state_dict['fc.bias'] |
|
model.load_state_dict(state_dict, False) |
|
else: |
|
model.apply(init_weights) |
|
self.model = model |
|
|
|
def save(self, epoch, optim, model_dir): |
|
state = {'net': self.model.state_dict(), 'optim': optim.state_dict()} |
|
torch.save(state, '{0}/{1:06d}.tar'.format(model_dir, epoch)) |
|
print('Saved model `{0}`'.format(epoch)) |
|
|
|
def load(self, epoch, model_dir): |
|
filename = '{0}{1:06d}.tar'.format(model_dir, epoch) |
|
print('Loading model from {0}'.format(filename)) |
|
if os.path.exists(filename): |
|
state = torch.load(filename) |
|
self.model.load_state_dict(state['net']) |
|
else: |
|
print('Failed to load model from {0}'.format(filename)) |
|
|
|
|