Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
|
5 |
# Load a model suited for code generation
|
6 |
-
model_name = "Salesforce/codegen-350M-mono" #
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
@@ -12,21 +12,32 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
12 |
model.to(device)
|
13 |
|
14 |
def generate_code(prompt):
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
with torch.no_grad():
|
20 |
generated_ids = model.generate(
|
21 |
input_tensor['input_ids'],
|
22 |
-
|
|
|
23 |
num_beams=5, # This controls the diversity of outputs
|
24 |
-
early_stopping=True
|
|
|
25 |
)
|
26 |
|
27 |
# Decode and return the generated code
|
28 |
generated_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
29 |
return generated_code
|
30 |
|
|
|
31 |
iface = gr.Interface(fn=generate_code, inputs="text", outputs="text", allow_flagging="never")
|
32 |
-
|
|
|
|
|
|
3 |
import torch
|
4 |
|
5 |
# Load a model suited for code generation
|
6 |
+
model_name = "Salesforce/codegen-350M-mono" # Choose a suitable model for your needs
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
|
|
12 |
model.to(device)
|
13 |
|
14 |
def generate_code(prompt):
|
15 |
+
# Add context to the prompt to clarify the output
|
16 |
+
full_prompt = f"Generate a basic HTML template for a personal blog. {prompt}"
|
17 |
|
18 |
+
# Tokenize the input and set pad token
|
19 |
+
input_tensor = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
20 |
+
|
21 |
+
# Set pad_token_id if not already set
|
22 |
+
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
|
23 |
+
|
24 |
+
# Generate code with attention mask
|
25 |
with torch.no_grad():
|
26 |
generated_ids = model.generate(
|
27 |
input_tensor['input_ids'],
|
28 |
+
attention_mask=input_tensor['attention_mask'], # Include attention mask
|
29 |
+
max_length=300, # Adjust this length as needed
|
30 |
num_beams=5, # This controls the diversity of outputs
|
31 |
+
early_stopping=True,
|
32 |
+
pad_token_id=pad_token_id # Set pad token id
|
33 |
)
|
34 |
|
35 |
# Decode and return the generated code
|
36 |
generated_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
37 |
return generated_code
|
38 |
|
39 |
+
# Set up the Gradio interface
|
40 |
iface = gr.Interface(fn=generate_code, inputs="text", outputs="text", allow_flagging="never")
|
41 |
+
|
42 |
+
# Launch the app with sharing enabled
|
43 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|