Arnesh27 commited on
Commit
c15417b
·
verified ·
1 Parent(s): 9ac8791

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -5,8 +5,12 @@ import torch
5
  # Load a model suited for code generation
6
  model_name = "Salesforce/codegen-350M-mono" # Choose a suitable model for your needs
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForCausalLM.from_pretrained(model_name)
9
 
 
 
 
 
 
10
  # Set the device
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
  model.to(device)
@@ -18,9 +22,6 @@ def generate_code(prompt):
18
  # Tokenize the input and set pad token
19
  input_tensor = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
20
 
21
- # Set pad_token_id if not already set
22
- pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
23
-
24
  # Generate code with attention mask
25
  with torch.no_grad():
26
  generated_ids = model.generate(
@@ -29,7 +30,7 @@ def generate_code(prompt):
29
  max_length=300, # Adjust this length as needed
30
  num_beams=5, # This controls the diversity of outputs
31
  early_stopping=True,
32
- pad_token_id=pad_token_id # Set pad token id
33
  )
34
 
35
  # Decode and return the generated code
@@ -39,5 +40,5 @@ def generate_code(prompt):
39
  # Set up the Gradio interface
40
  iface = gr.Interface(fn=generate_code, inputs="text", outputs="text", allow_flagging="never")
41
 
42
- # Launch the app with sharing enabled
43
- iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
 
5
  # Load a model suited for code generation
6
  model_name = "Salesforce/codegen-350M-mono" # Choose a suitable model for your needs
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
8
 
9
+ # Set a padding token if it doesn't exist
10
+ if tokenizer.pad_token is None:
11
+ tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token
12
+
13
+ model = AutoModelForCausalLM.from_pretrained(model_name)
14
  # Set the device
15
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
  model.to(device)
 
22
  # Tokenize the input and set pad token
23
  input_tensor = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
24
 
 
 
 
25
  # Generate code with attention mask
26
  with torch.no_grad():
27
  generated_ids = model.generate(
 
30
  max_length=300, # Adjust this length as needed
31
  num_beams=5, # This controls the diversity of outputs
32
  early_stopping=True,
33
+ pad_token_id=tokenizer.pad_token_id # Set pad token id
34
  )
35
 
36
  # Decode and return the generated code
 
40
  # Set up the Gradio interface
41
  iface = gr.Interface(fn=generate_code, inputs="text", outputs="text", allow_flagging="never")
42
 
43
+ # Launch the app
44
+ iface.launch(server_name="0.0.0.0", server_port=7860)