File size: 7,117 Bytes
f8dbf90 1b83088 98e1f97 1b83088 3fb4935 4bf76df 8903fd7 4bf76df 8903fd7 f8dbf90 1b83088 3134b3b 1b83088 f8dbf90 8903fd7 f8dbf90 e705807 f8dbf90 3134b3b 8903fd7 1b83088 f8dbf90 cba9efc f8dbf90 8903fd7 1b83088 9f8e60f 1b83088 3134b3b 1b83088 8903fd7 3fb4935 8903fd7 3fb4935 8903fd7 3134b3b 1b83088 8903fd7 3134b3b 4bf76df 8903fd7 4bf76df 8903fd7 3134b3b 8903fd7 1b83088 8903fd7 75b06d3 8903fd7 838191d 8903fd7 da7ac0b 8903fd7 d35faf8 1b83088 83ac817 8903fd7 1b83088 8903fd7 3134b3b 1b83088 3134b3b 8903fd7 f1447e0 d35faf8 990d424 8903fd7 d35faf8 75b06d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel
import ast
import networkx as nx
import matplotlib.pyplot as plt
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.6,
"top_p": 0.8,
"top_k": 30,
"max_output_tokens": 16384,
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, a highly advanced code assistant with deep knowledge in AI, machine learning, and software engineering. You provide cutting-edge, optimized, and secure code solutions. Speak casually and use tech jargon when appropriate.
"""
)
chat_session = model.start_chat(history=[])
# Load pre-trained BERT model for code understanding
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
class CodeImprovement(nn.Module):
def __init__(self, input_dim):
super(CodeImprovement, self).__init__()
self.fc1 = nn.Linear(input_dim, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 128)
self.fc4 = nn.Linear(128, 2) # Binary classification: needs improvement or not
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
return torch.sigmoid(self.fc4(x))
code_improvement_model = CodeImprovement(768) # 768 is BERT's output dimension
optimizer = optim.Adam(code_improvement_model.parameters())
criterion = nn.BCELoss()
def generate_response(user_input):
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error: {e}"
def optimize_code(code):
# Use abstract syntax tree for advanced code analysis
tree = ast.parse(code)
analyzer = CodeAnalyzer()
analyzer.visit(tree)
# Apply code transformations based on analysis
transformer = CodeTransformer(analyzer.get_optimizations())
optimized_tree = transformer.visit(tree)
optimized_code = ast.unparse(optimized_tree)
# Run pylint for additional suggestions
with open("temp_code.py", "w") as file:
file.write(optimized_code)
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
os.remove("temp_code.py")
return optimized_code, result.stdout
def fetch_from_github(query):
headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
if response.status_code == 200:
return response.json()['items'][:5] # Return top 5 results
return []
def interact_with_api(api_url):
response = requests.get(api_url)
return response.json()
def train_ml_model(code_data):
df = pd.DataFrame(code_data)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier(n_estimators=100, max_depth=10)
model.fit(X_train, y_train)
return model
def analyze_code_quality(code):
# Tokenize and encode the code
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
# Get BERT embeddings
with torch.no_grad():
outputs = codebert_model(**inputs)
# Use the [CLS] token embedding for classification
cls_embedding = outputs.last_hidden_state[:, 0, :]
# Pass through our code improvement model
prediction = code_improvement_model(cls_embedding)
return prediction.item() # Return the probability of needing improvement
def visualize_code_structure(code):
tree = ast.parse(code)
graph = nx.DiGraph()
def add_nodes_edges(node, parent=None):
node_id = id(node)
graph.add_node(node_id, label=type(node).__name__)
if parent:
graph.add_edge(id(parent), node_id)
for child in ast.iter_child_nodes(node):
add_nodes_edges(child, node)
add_nodes_edges(tree)
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(graph)
nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=1000, font_size=8, font_weight='bold')
labels = nx.get_node_attributes(graph, 'label')
nx.draw_networkx_labels(graph, pos, labels, font_size=6)
return plt
# Streamlit UI setup
st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="π", layout="wide")
# ... (keep the existing CSS styles) ...
st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("π Advanced AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini & Deep Learning</p>', unsafe_allow_html=True)
prompt = st.text_area("What advanced code task can I help you with today?", height=120)
if st.button("Generate Advanced Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating and analyzing code..."):
completed_text = generate_response(prompt)
if "Error" in completed_text:
st.error(completed_text)
else:
optimized_code, lint_results = optimize_code(completed_text)
quality_score = analyze_code_quality(optimized_code)
st.success(f"Code generated and optimized successfully! Quality Score: {quality_score:.2f}")
st.markdown('<div class="output-container">', unsafe_allow_html=True)
st.markdown('<div class="code-block">', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('</div>', unsafe_allow_html=True)
with st.expander("View Code Structure Visualization"):
st.pyplot(visualize_code_structure(optimized_code))
with st.expander("View Lint Results"):
st.text(lint_results)
with st.expander("Fetch Similar Code from GitHub"):
github_results = fetch_from_github(prompt)
for item in github_results:
st.markdown(f"[{item['name']}]({item['html_url']})")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
Crafted with π by Your Advanced AI Code Assistant
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True) |