File size: 7,117 Bytes
f8dbf90
 
1b83088
98e1f97
1b83088
3fb4935
4bf76df
8903fd7
4bf76df
 
8903fd7
 
 
 
 
 
 
f8dbf90
1b83088
 
3134b3b
1b83088
f8dbf90
8903fd7
 
 
 
f8dbf90
 
 
e705807
f8dbf90
3134b3b
8903fd7
1b83088
f8dbf90
cba9efc
f8dbf90
8903fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b83088
9f8e60f
 
 
 
1b83088
3134b3b
1b83088
8903fd7
 
 
 
 
 
 
 
 
 
 
 
3fb4935
8903fd7
3fb4935
 
8903fd7
 
3134b3b
1b83088
8903fd7
 
 
 
 
3134b3b
4bf76df
 
 
 
 
 
 
 
 
8903fd7
4bf76df
 
 
8903fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3134b3b
8903fd7
 
 
1b83088
8903fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b06d3
 
8903fd7
 
838191d
8903fd7
da7ac0b
8903fd7
d35faf8
1b83088
83ac817
8903fd7
1b83088
 
 
 
8903fd7
 
 
 
3134b3b
 
 
1b83088
3134b3b
8903fd7
 
 
 
 
 
 
 
 
 
 
 
f1447e0
 
d35faf8
990d424
8903fd7
d35faf8
75b06d3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel
import ast
import networkx as nx
import matplotlib.pyplot as plt

# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])

# Create the model with optimized parameters and enhanced system instructions
generation_config = {
    "temperature": 0.6,
    "top_p": 0.8,
    "top_k": 30,
    "max_output_tokens": 16384,
}

model = genai.GenerativeModel(
    model_name="gemini-1.5-pro",
    generation_config=generation_config,
    system_instruction="""
    You are Ath, a highly advanced code assistant with deep knowledge in AI, machine learning, and software engineering. You provide cutting-edge, optimized, and secure code solutions. Speak casually and use tech jargon when appropriate.
    """
)
chat_session = model.start_chat(history=[])

# Load pre-trained BERT model for code understanding
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")

class CodeImprovement(nn.Module):
    def __init__(self, input_dim):
        super(CodeImprovement, self).__init__()
        self.fc1 = nn.Linear(input_dim, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 128)
        self.fc4 = nn.Linear(128, 2)  # Binary classification: needs improvement or not

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = torch.relu(self.fc3(x))
        return torch.sigmoid(self.fc4(x))

code_improvement_model = CodeImprovement(768)  # 768 is BERT's output dimension
optimizer = optim.Adam(code_improvement_model.parameters())
criterion = nn.BCELoss()

def generate_response(user_input):
    try:
        response = chat_session.send_message(user_input)
        return response.text
    except Exception as e:
        return f"Error: {e}"

def optimize_code(code):
    # Use abstract syntax tree for advanced code analysis
    tree = ast.parse(code)
    analyzer = CodeAnalyzer()
    analyzer.visit(tree)
    
    # Apply code transformations based on analysis
    transformer = CodeTransformer(analyzer.get_optimizations())
    optimized_tree = transformer.visit(tree)
    
    optimized_code = ast.unparse(optimized_tree)
    
    # Run pylint for additional suggestions
    with open("temp_code.py", "w") as file:
        file.write(optimized_code)
    result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
    os.remove("temp_code.py")
    
    return optimized_code, result.stdout

def fetch_from_github(query):
    headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
    response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
    if response.status_code == 200:
        return response.json()['items'][:5]  # Return top 5 results
    return []

def interact_with_api(api_url):
    response = requests.get(api_url)
    return response.json()

def train_ml_model(code_data):
    df = pd.DataFrame(code_data)
    X = df.drop('target', axis=1)
    y = df['target']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    model = RandomForestClassifier(n_estimators=100, max_depth=10)
    model.fit(X_train, y_train)
    return model

def analyze_code_quality(code):
    # Tokenize and encode the code
    inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
    
    # Get BERT embeddings
    with torch.no_grad():
        outputs = codebert_model(**inputs)
    
    # Use the [CLS] token embedding for classification
    cls_embedding = outputs.last_hidden_state[:, 0, :]
    
    # Pass through our code improvement model
    prediction = code_improvement_model(cls_embedding)
    
    return prediction.item()  # Return the probability of needing improvement

def visualize_code_structure(code):
    tree = ast.parse(code)
    graph = nx.DiGraph()
    
    def add_nodes_edges(node, parent=None):
        node_id = id(node)
        graph.add_node(node_id, label=type(node).__name__)
        if parent:
            graph.add_edge(id(parent), node_id)
        for child in ast.iter_child_nodes(node):
            add_nodes_edges(child, node)
    
    add_nodes_edges(tree)
    
    plt.figure(figsize=(12, 8))
    pos = nx.spring_layout(graph)
    nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=1000, font_size=8, font_weight='bold')
    labels = nx.get_node_attributes(graph, 'label')
    nx.draw_networkx_labels(graph, pos, labels, font_size=6)
    
    return plt

# Streamlit UI setup
st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="πŸš€", layout="wide")

# ... (keep the existing CSS styles) ...

st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("πŸš€ Advanced AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini & Deep Learning</p>', unsafe_allow_html=True)

prompt = st.text_area("What advanced code task can I help you with today?", height=120)

if st.button("Generate Advanced Code"):
    if prompt.strip() == "":
        st.error("Please enter a valid prompt.")
    else:
        with st.spinner("Generating and analyzing code..."):
            completed_text = generate_response(prompt)
            if "Error" in completed_text:
                st.error(completed_text)
            else:
                optimized_code, lint_results = optimize_code(completed_text)
                quality_score = analyze_code_quality(optimized_code)
                
                st.success(f"Code generated and optimized successfully! Quality Score: {quality_score:.2f}")
                
                st.markdown('<div class="output-container">', unsafe_allow_html=True)
                st.markdown('<div class="code-block">', unsafe_allow_html=True)
                st.code(optimized_code)
                st.markdown('</div>', unsafe_allow_html=True)
                
                with st.expander("View Code Structure Visualization"):
                    st.pyplot(visualize_code_structure(optimized_code))
                
                with st.expander("View Lint Results"):
                    st.text(lint_results)
                
                with st.expander("Fetch Similar Code from GitHub"):
                    github_results = fetch_from_github(prompt)
                    for item in github_results:
                        st.markdown(f"[{item['name']}]({item['html_url']})")
                
                st.markdown('</div>', unsafe_allow_html=True)

st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
    Crafted with πŸš€ by Your Advanced AI Code Assistant
</div>
""", unsafe_allow_html=True)

st.markdown('</div>', unsafe_allow_html=True)