File size: 9,827 Bytes
f8dbf90 1b83088 98e1f97 1b83088 4bf76df 8903fd7 4bf76df 8903fd7 f8dbf90 1b83088 3134b3b 1b83088 f8dbf90 8903fd7 f8dbf90 e705807 f8dbf90 3134b3b 8903fd7 1b83088 f8dbf90 cba9efc f8dbf90 8903fd7 1b83088 9f8e60f 8962e95 3134b3b 1b83088 8962e95 ae1ac19 8962e95 ae1ac19 8962e95 8903fd7 3fb4935 8903fd7 3fb4935 8903fd7 3134b3b 1b83088 8903fd7 3134b3b 8903fd7 3134b3b 8903fd7 ae1ac19 8903fd7 ae1ac19 75b06d3 8903fd7 838191d 8903fd7 da7ac0b 8903fd7 d35faf8 1b83088 83ac817 8903fd7 1b83088 8962e95 1b83088 8903fd7 ae1ac19 8962e95 ae1ac19 f1447e0 d35faf8 990d424 8903fd7 d35faf8 75b06d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel
import ast
import networkx as nx
import matplotlib.pyplot as plt
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.6,
"top_p": 0.8,
"top_k": 30,
"max_output_tokens": 16384,
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, a highly advanced code assistant with deep knowledge in AI, machine learning, and software engineering. You provide cutting-edge, optimized, and secure code solutions. Speak casually and use tech jargon when appropriate.
"""
)
chat_session = model.start_chat(history=[])
# Load pre-trained BERT model for code understanding
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
class CodeImprovement(nn.Module):
def __init__(self, input_dim):
super(CodeImprovement, self).__init__()
self.fc1 = nn.Linear(input_dim, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 128)
self.fc4 = nn.Linear(128, 2) # Binary classification: needs improvement or not
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
return torch.sigmoid(self.fc4(x))
code_improvement_model = CodeImprovement(768) # 768 is BERT's output dimension
optimizer = optim.Adam(code_improvement_model.parameters())
criterion = nn.BCELoss()
def generate_response(user_input):
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error in generating response: {str(e)}"
def validate_and_fix_code(code):
lines = code.split('\n')
fixed_lines = []
for line in lines:
# Check for unterminated string literals
if line.count('"') % 2 != 0 and line.count("'") % 2 != 0:
line += '"' # Add a closing quote if needed
fixed_lines.append(line)
return '\n'.join(fixed_lines)
def optimize_code(code):
# Validate and fix the code first
fixed_code = validate_and_fix_code(code)
try:
tree = ast.parse(fixed_code)
# Placeholder for actual optimization logic
optimized_code = fixed_code
except SyntaxError as e:
return fixed_code, f"SyntaxError: {str(e)}"
# Run pylint for additional suggestions
with open("temp_code.py", "w") as file:
file.write(optimized_code)
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
os.remove("temp_code.py")
return optimized_code, result.stdout
def fetch_from_github(query):
headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
if response.status_code == 200:
return response.json()['items'][:5] # Return top 5 results
return []
def analyze_code_quality(code):
# Tokenize and encode the code
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
# Get BERT embeddings
with torch.no_grad():
outputs = codebert_model(**inputs)
# Use the [CLS] token embedding for classification
cls_embedding = outputs.last_hidden_state[:, 0, :]
# Pass through our code improvement model
prediction = code_improvement_model(cls_embedding)
return prediction.item() # Return the probability of needing improvement
def visualize_code_structure(code):
try:
tree = ast.parse(code)
graph = nx.DiGraph()
def add_nodes_edges(node, parent=None):
node_id = id(node)
graph.add_node(node_id, label=type(node).__name__)
if parent:
graph.add_edge(id(parent), node_id)
for child in ast.iter_child_nodes(node):
add_nodes_edges(child, node)
add_nodes_edges(tree)
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(graph)
nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=1000, font_size=8, font_weight='bold')
labels = nx.get_node_attributes(graph, 'label')
nx.draw_networkx_labels(graph, pos, labels, font_size=6)
return plt
except SyntaxError:
return None
# Streamlit UI setup
st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="π", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
body {
font-family: 'Inter', sans-serif;
background-color: #f0f4f8;
color: #1a202c;
}
.stApp {
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
}
.main-container {
background: #ffffff;
border-radius: 16px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
h1 {
font-size: 2.5rem;
font-weight: 700;
color: #2d3748;
text-align: center;
margin-bottom: 1rem;
}
.subtitle {
font-size: 1.1rem;
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
}
.stTextArea textarea {
border: 2px solid #e2e8f0;
border-radius: 8px;
font-size: 1rem;
padding: 0.75rem;
transition: all 0.3s ease;
}
.stTextArea textarea:focus {
border-color: #4299e1;
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
}
.stButton button {
background-color: #4299e1;
color: white;
border: none;
border-radius: 8px;
font-size: 1.1rem;
font-weight: 600;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
width: 100%;
}
.stButton button:hover {
background-color: #3182ce;
}
.output-container {
background: #f7fafc;
border-radius: 8px;
padding: 1rem;
margin-top: 2rem;
}
.code-block {
background-color: #2d3748;
color: #e2e8f0;
font-family: 'Fira Code', monospace;
font-size: 0.9rem;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
overflow-x: auto;
}
.stAlert {
background-color: #ebf8ff;
color: #2b6cb0;
border-radius: 8px;
border: none;
padding: 0.75rem 1rem;
}
.stSpinner {
color: #4299e1;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("π Advanced AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini & Deep Learning</p>', unsafe_allow_html=True)
prompt = st.text_area("What advanced code task can I help you with today?", height=120)
if st.button("Generate Advanced Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating and analyzing code..."):
completed_text = generate_response(prompt)
if "Error in generating response" in completed_text:
st.error(completed_text)
else:
optimized_code, lint_results = optimize_code(completed_text)
if "SyntaxError" in lint_results:
st.warning(f"Syntax error detected in the generated code. Attempting to fix...")
st.code(optimized_code)
st.info("Please review the code above. It may contain errors or be incomplete.")
else:
quality_score = analyze_code_quality(optimized_code)
st.success(f"Code generated and optimized successfully! Quality Score: {quality_score:.2f}")
st.markdown('<div class="output-container">', unsafe_allow_html=True)
st.markdown('<div class="code-block">', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('</div>', unsafe_allow_html=True)
visualization = visualize_code_structure(optimized_code)
if visualization:
with st.expander("View Code Structure Visualization"):
st.pyplot(visualization)
else:
st.warning("Unable to generate code structure visualization due to syntax errors.")
with st.expander("View Lint Results"):
st.text(lint_results)
with st.expander("Fetch Similar Code from GitHub"):
github_results = fetch_from_github(prompt)
for item in github_results:
st.markdown(f"[{item['name']}]({item['html_url']})")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
Crafted with π by Your Advanced AI Code Assistant
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True) |