File size: 13,101 Bytes
f8dbf90 1b83088 98e1f97 1b83088 4bf76df ca9dc4d 4bf76df ca9dc4d f8dbf90 1b83088 3134b3b 1b83088 f8dbf90 ca9dc4d f8dbf90 e705807 f8dbf90 3134b3b ca9dc4d 1b83088 f8dbf90 cba9efc f8dbf90 ca9dc4d 1b83088 9f8e60f ca9dc4d 3134b3b 1b83088 ca9dc4d 3134b3b ca9dc4d 68bdd93 ca9dc4d 8903fd7 ca9dc4d ae1ac19 ca9dc4d ae1ac19 ca9dc4d 75b06d3 ca9dc4d 838191d ca9dc4d da7ac0b ca9dc4d d35faf8 1b83088 83ac817 ca9dc4d ae1ac19 ca9dc4d ae1ac19 96ad4a3 ca9dc4d 68bdd93 ca9dc4d 68bdd93 ca9dc4d f1447e0 d35faf8 990d424 ca9dc4d d35faf8 75b06d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel, pipeline
import ast
import networkx as nx
import matplotlib.pyplot as plt
import re
import javalang
import clang.cindex
import radon.metrics as radon_metrics
import radon.complexity as radon_complexity
import black
import isort
import autopep8
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.7,
"top_p": 0.9,
"top_k": 40,
"max_output_tokens": 32768,
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, an extremely advanced code assistant with deep expertise in AI, machine learning, software engineering, and multiple programming languages. You provide cutting-edge, optimized, and secure code solutions across various domains. Use your vast knowledge to generate high-quality code, perform advanced analyses, and offer insightful optimizations. Adapt your language and explanations based on the user's expertise level.
"""
)
chat_session = model.start_chat(history=[])
# Load pre-trained models for code understanding and generation
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
code_generation_model = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
class AdvancedCodeImprovement(nn.Module):
def __init__(self, input_dim):
super(AdvancedCodeImprovement, self).__init__()
self.fc1 = nn.Linear(input_dim, 1024)
self.fc2 = nn.Linear(1024, 512)
self.fc3 = nn.Linear(512, 256)
self.fc4 = nn.Linear(256, 128)
self.fc5 = nn.Linear(128, 64)
self.fc6 = nn.Linear(64, 32)
self.fc7 = nn.Linear(32, 16)
self.fc8 = nn.Linear(16, 4) # Multiple classification: style, efficiency, security, maintainability
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
x = torch.relu(self.fc4(x))
x = torch.relu(self.fc5(x))
x = torch.relu(self.fc6(x))
x = torch.relu(self.fc7(x))
return torch.sigmoid(self.fc8(x))
code_improvement_model = AdvancedCodeImprovement(768) # 768 is BERT's output dimension
optimizer = optim.Adam(code_improvement_model.parameters())
criterion = nn.BCELoss()
def generate_response(user_input):
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error in generating response: {str(e)}"
def detect_language(code):
# Simple language detection based on keywords and syntax
if re.search(r'\b(def|class|import)\b', code):
return 'python'
elif re.search(r'\b(function|var|let|const)\b', code):
return 'javascript'
elif re.search(r'\b(public|private|class)\b', code):
return 'java'
elif re.search(r'\b(#include|int main)\b', code):
return 'c++'
else:
return 'unknown'
def validate_and_fix_code(code, language):
if language == 'python':
try:
fixed_code = autopep8.fix_code(code)
fixed_code = isort.SortImports(file_contents=fixed_code).output
fixed_code = black.format_str(fixed_code, mode=black.FileMode())
return fixed_code
except Exception as e:
return code, f"Error in fixing Python code: {str(e)}"
elif language == 'javascript':
# Use a JS beautifier (placeholder)
return code
elif language == 'java':
# Use a Java formatter (placeholder)
return code
elif language == 'c++':
# Use a C++ formatter (placeholder)
return code
else:
return code
def optimize_code(code):
language = detect_language(code)
fixed_code, fix_error = validate_and_fix_code(code, language)
if fix_error:
return fixed_code, fix_error
if language == 'python':
try:
tree = ast.parse(fixed_code)
# Perform advanced Python-specific optimizations
optimizer = PythonCodeOptimizer()
optimized_tree = optimizer.visit(tree)
optimized_code = ast.unparse(optimized_tree)
except SyntaxError as e:
return fixed_code, f"SyntaxError: {str(e)}"
elif language == 'java':
try:
tree = javalang.parse.parse(fixed_code)
# Perform Java-specific optimizations
optimizer = JavaCodeOptimizer()
optimized_code = optimizer.optimize(tree)
except javalang.parser.JavaSyntaxError as e:
return fixed_code, f"JavaSyntaxError: {str(e)}"
elif language == 'c++':
try:
index = clang.cindex.Index.create()
tu = index.parse('temp.cpp', args=['-std=c++14'], unsaved_files=[('temp.cpp', fixed_code)])
# Perform C++-specific optimizations
optimizer = CppCodeOptimizer()
optimized_code = optimizer.optimize(tu)
except Exception as e:
return fixed_code, f"C++ Parsing Error: {str(e)}"
else:
optimized_code = fixed_code # For unsupported languages, return the fixed code
# Run language-specific linter
lint_results = run_linter(optimized_code, language)
return optimized_code, lint_results
def run_linter(code, language):
if language == 'python':
with open("temp_code.py", "w") as file:
file.write(code)
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
os.remove("temp_code.py")
return result.stdout
elif language == 'javascript':
# Run ESLint (placeholder)
return "JavaScript linting not implemented"
elif language == 'java':
# Run CheckStyle (placeholder)
return "Java linting not implemented"
elif language == 'c++':
# Run cppcheck (placeholder)
return "C++ linting not implemented"
else:
return "Linting not available for the detected language"
def fetch_from_github(query):
headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
if response.status_code == 200:
return response.json()['items'][:5] # Return top 5 results
return []
def analyze_code_quality(code):
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
with torch.no_grad():
outputs = codebert_model(**inputs)
cls_embedding = outputs.last_hidden_state[:, 0, :]
predictions = code_improvement_model(cls_embedding)
quality_scores = {
"style": predictions[0][0].item(),
"efficiency": predictions[0][1].item(),
"security": predictions[0][2].item(),
"maintainability": predictions[0][3].item()
}
# Calculate additional metrics
language = detect_language(code)
if language == 'python':
complexity = radon_complexity.cc_visit(code)
maintainability = radon_metrics.mi_visit(code, True)
quality_scores["cyclomatic_complexity"] = complexity[0].complexity
quality_scores["maintainability_index"] = maintainability
return quality_scores
def visualize_code_structure(code):
try:
tree = ast.parse(code)
graph = nx.DiGraph()
def add_nodes_edges(node, parent=None):
node_id = id(node)
graph.add_node(node_id, label=f"{type(node).__name__}\n{ast.unparse(node)[:20]}")
if parent:
graph.add_edge(id(parent), node_id)
for child in ast.iter_child_nodes(node):
add_nodes_edges(child, node)
add_nodes_edges(tree)
plt.figure(figsize=(15, 10))
pos = nx.spring_layout(graph, k=0.9, iterations=50)
nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=2000, font_size=8, font_weight='bold', arrows=True)
labels = nx.get_node_attributes(graph, 'label')
nx.draw_networkx_labels(graph, pos, labels, font_size=6)
return plt
except SyntaxError:
return None
def suggest_improvements(code, quality_scores):
suggestions = []
if quality_scores["style"] < 0.7:
suggestions.append("Consider improving code style for better readability.")
if quality_scores["efficiency"] < 0.7:
suggestions.append("There might be room for optimizing the code's efficiency.")
if quality_scores["security"] < 0.8:
suggestions.append("Review the code for potential security vulnerabilities.")
if quality_scores["maintainability"] < 0.7:
suggestions.append("The code could be refactored to improve maintainability.")
if "cyclomatic_complexity" in quality_scores and quality_scores["cyclomatic_complexity"] > 10:
suggestions.append("Consider breaking down complex functions to reduce cyclomatic complexity.")
return suggestions
# Streamlit UI setup
st.set_page_config(page_title="Highly Advanced AI Code Assistant", page_icon="π", layout="wide")
# ... (keep the existing CSS styles) ...
st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("π Highly Advanced AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Advanced AI & Multi-Domain Expertise</p>', unsafe_allow_html=True)
prompt = st.text_area("What advanced code task can I assist you with today?", height=120)
if st.button("Generate Advanced Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating and analyzing code..."):
completed_text = generate_response(prompt)
if "Error in generating response" in completed_text:
st.error(completed_text)
else:
optimized_code, lint_results = optimize_code(completed_text)
if "Error" in lint_results:
st.warning(f"Issues detected in the generated code. Attempting to fix...")
st.code(optimized_code)
st.info("Please review the code above. It may contain errors or be incomplete.")
else:
quality_scores = analyze_code_quality(optimized_code)
overall_quality = sum(quality_scores.values()) / len(quality_scores)
st.success(f"Code generated and optimized successfully! Overall Quality Score: {overall_quality:.2f}")
st.markdown('<div class="output-container">', unsafe_allow_html=True)
st.markdown('<div class="code-block">', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('</div>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.subheader("Code Quality Metrics")
for metric, score in quality_scores.items():
st.metric(metric.capitalize(), f"{score:.2f}")
with col2:
st.subheader("Improvement Suggestions")
suggestions = suggest_improvements(optimized_code, quality_scores)
for suggestion in suggestions:
st.info(suggestion)
visualization = visualize_code_structure(optimized_code)
if visualization:
with st.expander("View Advanced Code Structure Visualization"):
st.pyplot(visualization)
else:
st.warning("Unable to generate code structure visualization.")
with st.expander("View Detailed Lint Results"):
st.text(lint_results)
with st.expander("Explore Similar Code from GitHub"):
github_results = fetch_from_github(prompt)
for item in github_results:
st.markdown(f"[{item['name']}]({item['html_url']})")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
Crafted with π by Your Highly Advanced AI Code Assistant
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True) |