Code / app.py
Artificial-superintelligence's picture
Update app.py
00814c9 verified
raw
history blame
9.2 kB
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import git
import spacy
from spacy.lang.en import English
import boto3
import unittest
from sympy import symbols, Eq, solve
from scipy.optimize import minimize
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.6, # Lower temperature for more deterministic responses
"top_p": 0.8, # Adjusted for better diversity
"top_k": 30, # Increased for more diverse tokens
"max_output_tokens": 16384, # Increased for longer responses
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI.
Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
"""
)
chat_session = model.start_chat(history=[])
def generate_response(user_input):
"""Generate a response from the AI model."""
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error: {e}"
def optimize_code(code):
"""Optimize the generated code using static analysis tools."""
with open("temp_code.py", "w") as file:
file.write(code)
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
os.remove("temp_code.py")
return code
def fetch_from_github(query):
"""Fetch code snippets from GitHub."""
# Placeholder for fetching code snippets from GitHub
return ""
def interact_with_api(api_url):
"""Interact with external APIs."""
response = requests.get(api_url)
return response.json()
def train_ml_model(code_data):
"""Train a machine learning model to predict code improvements."""
df = pd.DataFrame(code_data)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier()
model.fit(X_train, y_train)
return model
def handle_error(error):
"""Handle errors and log them."""
st.error(f"An error occurred: {error}")
def initialize_git_repo(repo_path):
"""Initialize or check the existence of a Git repository."""
if not os.path.exists(repo_path):
os.makedirs(repo_path)
if not os.path.exists(os.path.join(repo_path, '.git')):
repo = git.Repo.init(repo_path)
else:
repo = git.Repo(repo_path)
return repo
def integrate_with_git(repo_path, code):
"""Integrate the generated code with a Git repository."""
repo = initialize_git_repo(repo_path)
with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
file.write(code)
repo.index.add(["generated_code.py"])
repo.index.commit("Added generated code")
def process_user_input(user_input):
"""Process user input using advanced natural language processing."""
nlp = English()
doc = nlp(user_input)
return doc
def interact_with_cloud_services(service_name, action, params):
"""Interact with cloud services using boto3."""
client = boto3.client(service_name)
response = getattr(client, action)(**params)
return response
def run_tests():
"""Run automated tests using unittest."""
# Ensure the tests directory is importable
tests_dir = os.path.join(os.getcwd(), 'tests')
if not os.path.exists(tests_dir):
os.makedirs(tests_dir)
init_file = os.path.join(tests_dir, '__init__.py')
if not os.path.exists(init_file):
with open(init_file, 'w') as f:
f.write('')
test_suite = unittest.TestLoader().discover(tests_dir)
test_runner = unittest.TextTestRunner()
test_result = test_runner.run(test_suite)
return test_result
def solve_equation(equation):
"""Solve mathematical equations using SymPy."""
x, y = symbols('x y')
eq = Eq(eval(equation))
solution = solve(eq, x)
return solution
def optimize_function(function, initial_guess):
"""Optimize a function using SciPy."""
result = minimize(lambda x: eval(function), initial_guess)
return result.x
def visualize_data(data):
"""Visualize data using Matplotlib and Seaborn."""
df = pd.DataFrame(data)
plt.figure(figsize=(10, 6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
# Streamlit UI setup
st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="πŸ’»", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
body {
font-family: 'Inter', sans-serif;
background-color: #f0f4f8;
color: #1a202c;
}
.stApp {
max-width: 1000px;
margin: 0 auto;
padding: 2rem;
}
.main-container {
background: #ffffff;
border-radius: 16px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
h1 {
font-size: 2.5rem;
font-weight: 700;
color: #2d3748;
text-align: center;
margin-bottom: 1rem;
}
.subtitle {
font-size: 1.1rem;
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
}
.stTextArea textarea {
border: 2px solid #e2e8f0;
border-radius: 8px;
font-size: 1rem;
padding: 0.75rem;
transition: all 0.3s ease;
}
.stTextArea textarea:focus {
border-color: #4299e1;
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
}
.stButton button {
background-color: #4299e1;
color: white;
border: none;
border-radius: 8px;
font-size: 1.1rem;
font-weight: 600;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
width: 100%;
}
.stButton button:hover {
background-color: #3182ce;
}
.output-container {
background: #f7fafc;
border-radius: 8px;
padding: 1rem;
margin-top: 2rem;
}
.code-block {
background-color: #2d3748;
color: #e2e8f0;
font-family: 'Fira Code', monospace;
font-size: 0.9rem;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
overflow-x: auto;
}
.stAlert {
background-color: #ebf8ff;
color: #2b6cb0;
border-radius: 8px;
border: none;
padding: 0.75rem 1rem;
}
.stSpinner {
color: #4299e1;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("πŸ’» Sleek AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True)
prompt = st.text_area("What code can I help you with today?", height=120)
if st.button("Generate Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating code..."):
try:
processed_input = process_user_input(prompt)
completed_text = generate_response(processed_input.text)
if "Error" in completed_text:
handle_error(completed_text)
else:
optimized_code = optimize_code(completed_text)
st.success("Code generated and optimized successfully!")
st.markdown('<div class="output-container">', unsafe_allow_html=True)
st.markdown('<div class="code-block">', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Integrate with Git
repo_path = "./repo" # Replace with your repository path
integrate_with_git(repo_path, optimized_code)
# Run automated tests
test_result = run_tests()
if test_result.wasSuccessful():
st.success("All tests passed successfully!")
else:
st.error("Some tests failed. Please check the code.")
except Exception as e:
handle_error(e)
st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
Created with ❀️ by Your Sleek AI Code Assistant
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)