|
import streamlit as st |
|
import google.generativeai as genai |
|
import requests |
|
import subprocess |
|
import os |
|
import pylint |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier |
|
import git |
|
import spacy |
|
from spacy.lang.en import English |
|
import boto3 |
|
import unittest |
|
import docker |
|
import sympy as sp |
|
from scipy.optimize import minimize |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from IPython.display import display |
|
from tenacity import retry, stop_after_attempt, wait_fixed |
|
|
|
|
|
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"]) |
|
|
|
|
|
generation_config = { |
|
"temperature": 0.5, |
|
"top_p": 0.7, |
|
"top_k": 40, |
|
"max_output_tokens": 2048, |
|
} |
|
|
|
model = genai.GenerativeModel( |
|
model_name="gemini-1.5-pro", |
|
generation_config=generation_config, |
|
system_instruction=""" |
|
You are Ath, a highly knowledgeable and advanced code assistant. Your responses are optimized for secure, high-quality, and cutting-edge code solutions. |
|
Focus on generating code that is efficient, readable, and adheres to best practices. Ensure that the code is well-documented and includes error handling where necessary. |
|
""" |
|
) |
|
chat_session = model.start_chat(history=[]) |
|
|
|
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2)) |
|
def generate_response(user_input): |
|
"""Generate a response from the AI model with retry mechanism.""" |
|
try: |
|
response = chat_session.send_message(user_input) |
|
return response.text |
|
except Exception as e: |
|
return f"Error: {e}" |
|
|
|
def optimize_code(code): |
|
"""Optimize the generated code using static analysis tools.""" |
|
with open("temp_code.py", "w") as file: |
|
file.write(code) |
|
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True) |
|
os.remove("temp_code.py") |
|
return code |
|
|
|
def fetch_from_github(query): |
|
"""Fetch code snippets from GitHub.""" |
|
|
|
return "" |
|
|
|
def interact_with_api(api_url): |
|
"""Interact with external APIs.""" |
|
response = requests.get(api_url) |
|
return response.json() |
|
|
|
def train_ml_model(code_data): |
|
"""Train a machine learning model to predict code improvements.""" |
|
df = pd.DataFrame(code_data) |
|
X = df.drop('target', axis=1) |
|
y = df['target'] |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) |
|
model = RandomForestClassifier() |
|
model.fit(X_train, y_train) |
|
return model |
|
|
|
def handle_error(error): |
|
"""Handle errors and log them.""" |
|
st.error(f"An error occurred: {error}") |
|
|
|
def initialize_git_repo(repo_path): |
|
"""Initialize or check the existence of a Git repository.""" |
|
if not os.path.exists(repo_path): |
|
os.makedirs(repo_path) |
|
if not os.path.exists(os.path.join(repo_path, '.git')): |
|
repo = git.Repo.init(repo_path) |
|
else: |
|
repo = git.Repo(repo_path) |
|
return repo |
|
|
|
def integrate_with_git(repo_path, code): |
|
"""Integrate the generated code with a Git repository.""" |
|
repo = initialize_git_repo(repo_path) |
|
with open(os.path.join(repo_path, "generated_code.py"), "w") as file: |
|
file.write(code) |
|
repo.index.add(["generated_code.py"]) |
|
repo.index.commit("Added generated code") |
|
|
|
def process_user_input(user_input): |
|
"""Process user input using advanced natural language processing.""" |
|
nlp = English() |
|
doc = nlp(user_input) |
|
return doc |
|
|
|
def interact_with_cloud_services(service_name, action, params): |
|
"""Interact with cloud services using boto3.""" |
|
client = boto3.client(service_name) |
|
response = getattr(client, action)(**params) |
|
return response |
|
|
|
def run_tests(): |
|
"""Run automated tests using unittest.""" |
|
tests_dir = os.path.join(os.getcwd(), 'tests') |
|
if not os.path.exists(tests_dir): |
|
os.makedirs(tests_dir) |
|
init_file = os.path.join(tests_dir, '__init__.py') |
|
if not os.path.exists(init_file): |
|
with open(init_file, 'w') as f: |
|
f.write('') |
|
|
|
test_suite = unittest.TestLoader().discover(tests_dir) |
|
test_runner = unittest.TextTestRunner() |
|
test_result = test_runner.run(test_suite) |
|
return test_result |
|
|
|
def execute_code_in_docker(code): |
|
"""Execute code in a Docker container for safety and isolation.""" |
|
client = docker.from_env() |
|
try: |
|
container = client.containers.run( |
|
image="python:3.9", |
|
command=f"python -c '{code}'", |
|
detach=True, |
|
remove=True |
|
) |
|
result = container.wait() |
|
logs = container.logs().decode('utf-8') |
|
return logs, result['StatusCode'] |
|
except Exception as e: |
|
return f"Error: {e}", 1 |
|
|
|
def solve_equation(equation): |
|
"""Solve mathematical equations using SymPy.""" |
|
x, y = sp.symbols('x y') |
|
eq = sp.Eq(eval(equation)) |
|
solution = sp.solve(eq, x) |
|
return solution |
|
|
|
def optimize_function(function, initial_guess): |
|
"""Optimize a function using SciPy.""" |
|
result = minimize(lambda x: eval(function), initial_guess) |
|
return result.x |
|
|
|
def visualize_data(data): |
|
"""Visualize data using Matplotlib and Seaborn.""" |
|
df = pd.DataFrame(data) |
|
plt.figure(figsize=(10, 6)) |
|
sns.heatmap(df.corr(), annot=True, cmap='coolwarm') |
|
plt.title('Correlation Heatmap') |
|
plt.show() |
|
|
|
def analyze_data(data): |
|
"""Perform advanced data analysis using Pandas and NumPy.""" |
|
df = pd.DataFrame(data) |
|
summary = df.describe() |
|
return summary |
|
|
|
def display_dataframe(data): |
|
"""Display a DataFrame in a user-friendly format.""" |
|
df = pd.DataFrame(data) |
|
display(df) |
|
|
|
|
|
st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="π", layout="wide") |
|
|
|
st.markdown(""" |
|
<style> |
|
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap'); |
|
|
|
body { |
|
font-family: 'Inter', sans-serif; |
|
background-color: #f0f4f8; |
|
color: #1a202c; |
|
} |
|
.stApp { |
|
max-width: 1200px; |
|
margin: 0 auto; |
|
padding: 2rem; |
|
} |
|
.main-container { |
|
background: #ffffff; |
|
border-radius: 16px; |
|
padding: 2rem; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05); |
|
} |
|
h1 { |
|
font-size: 2.5rem; |
|
font-weight: 700; |
|
color: #2d3748; |
|
text-align: center; |
|
margin-bottom: 1rem; |
|
} |
|
.subtitle { |
|
font-size: 1.1rem; |
|
text-align: center; |
|
color: #4a5568; |
|
margin-bottom: 2rem; |
|
} |
|
.stTextArea textarea { |
|
border: 2px solid #e2e8f0; |
|
border-radius: 8px; |
|
font-size: 1rem; |
|
padding: 0.75rem; |
|
transition: all 0.3s ease; |
|
} |
|
.stTextArea textarea:focus { |
|
border-color: #4299e1; |
|
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5); |
|
} |
|
.stButton button { |
|
background-color: #4299e1; |
|
color: white; |
|
border: none; |
|
border-radius: 8px; |
|
font-size: 1.1rem; |
|
font-weight: 600; |
|
padding: 0.75rem 2rem; |
|
transition: all 0.3s ease; |
|
width: 100%; |
|
} |
|
.stButton button:hover { |
|
background-color: #3182ce; |
|
} |
|
.output-container { |
|
background: #f7fafc; |
|
border-radius: 8px; |
|
padding: 1rem; |
|
margin-top: 2rem; |
|
} |
|
.code-block { |
|
background-color: #2d3748; |
|
color: #e2e8f0; |
|
font-family: 'Fira Code', monospace; |
|
font-size: 0.9rem; |
|
border-radius: 8px; |
|
padding: 1rem; |
|
margin-top: 1rem; |
|
overflow-x: auto; |
|
} |
|
.stAlert { |
|
background-color: #ebf8ff; |
|
color: #2b6cb0; |
|
border-radius: 8px; |
|
border: none; |
|
padding: 0.75rem 1rem; |
|
} |
|
.stSpinner { |
|
color: #4299e1; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown('<div class="main-container">', unsafe_allow_html=True) |
|
st.title("π Ultra AI Code Assistant") |
|
st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True) |
|
|
|
prompt = st.text_area("What code can I help you with today?", height=120) |
|
|
|
if st.button("Generate Code"): |
|
if prompt.strip() == "": |
|
st.error("Please enter a valid prompt.") |
|
else: |
|
with st.spinner("Generating code..."): |
|
try: |
|
processed_input = process_user_input(prompt) |
|
completed_text = generate_response(processed_input.text) |
|
if "Error" in completed_text: |
|
handle_error(completed_text) |
|
else: |
|
optimized_code = optimize_code(completed_text) |
|
st.success("Code generated and optimized successfully!") |
|
|
|
st.markdown('<div class="output-container">', unsafe_allow_html=True) |
|
st.markdown('<div class="code-block">', unsafe_allow_html=True) |
|
st.code(optimized_code) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
repo_path = "./repo" |
|
integrate_with_git(repo_path, optimized_code) |
|
|
|
|
|
test_result = run_tests() |
|
if test_result.wasSuccessful(): |
|
st.success("All tests passed successfully!") |
|
else: |
|
st.error("Some tests failed. Please check the code.") |
|
|
|
|
|
execution_result, status_code = execute_code_in_docker(optimized_code) |
|
if status_code == 0: |
|
st.success("Code executed successfully in Docker!") |
|
st.text(execution_result) |
|
else: |
|
st.error(f"Code execution failed: {execution_result}") |
|
except Exception as e: |
|
handle_error(e) |
|
|
|
st.markdown(""" |
|
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'> |
|
Created with β€οΈ by Your Ultra AI Code Assistant |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown('</div>', unsafe_allow_html=True) |