Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# L-MChat | |
This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI. | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>" | |
model_options = { | |
"Fast-Model": "Artples/L-MChat-Small", | |
"Quality-Model": "Artples/L-MChat-7b" | |
} | |
def generate( | |
message: str, | |
model_choice: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.1, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
model_id = model_options[model_choice] | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer(conversation, return_tensors="pt", padding=True, truncation=True) | |
if input_ids['input_ids'].shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids['input_ids'] = input_ids['input_ids'][:, -MAX_INPUT_TOKEN_LENGTH:] | |
outputs = model.generate( | |
**input_ids, | |
max_length=input_ids['input_ids'].shape[1] + max_new_tokens, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_return_sequences=1, | |
repetition_penalty=repetition_penalty | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
yield generated_text | |
chat_interface = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Type your message here..."), | |
gr.Dropdown(label="Choose Model", choices=list(model_options.keys())), | |
gr.State(label="Chat History", default=[]), | |
gr.Textbox(label="System Prompt", lines=6, placeholder="Enter system prompt if any..."), | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
outputs=[gr.Textbox(label="Response")], | |
theme="default", | |
description=DESCRIPTION | |
) | |
if __name__ == "__main__": | |
chat_interface.launch() | |