L-MChat-ZeroGPU / app.py
Artples's picture
Update app.py
1c84354 verified
raw
history blame
3.19 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# L-MChat
This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>"
model_options = {
"Fast-Model": "Artples/L-MChat-Small",
"Quality-Model": "Artples/L-MChat-7b"
}
@spaces.GPU(enable_queue=True, duration=90)
def generate(
message: str,
model_choice: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.1,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
model_id = model_options[model_choice]
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer(conversation, return_tensors="pt", padding=True, truncation=True)
if input_ids['input_ids'].shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids['input_ids'] = input_ids['input_ids'][:, -MAX_INPUT_TOKEN_LENGTH:]
outputs = model.generate(
**input_ids,
max_length=input_ids['input_ids'].shape[1] + max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=1,
repetition_penalty=repetition_penalty
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
yield generated_text
chat_interface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(lines=2, placeholder="Type your message here..."),
gr.Dropdown(label="Choose Model", choices=list(model_options.keys())),
gr.State(label="Chat History", default=[]),
gr.Textbox(label="System Prompt", lines=6, placeholder="Enter system prompt if any..."),
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
outputs=[gr.Textbox(label="Response")],
theme="default",
description=DESCRIPTION
)
if __name__ == "__main__":
chat_interface.launch()