Arts-of-coding commited on
Commit
85c4179
·
verified ·
1 Parent(s): ae14a99

Delete pages/DLC_wt2an2.py

Browse files
Files changed (1) hide show
  1. pages/DLC_wt2an2.py +0 -260
pages/DLC_wt2an2.py DELETED
@@ -1,260 +0,0 @@
1
- # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
- # Shoutout to Coding-with-Adam for the initial template of the project:
3
- # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
-
5
- import dash
6
- from dash import dcc, html, Output, Input, callback
7
- import plotly.express as px
8
- import dash_callback_chain
9
- import yaml
10
- import polars as pl
11
- import os
12
- from natsort import natsorted
13
- #pl.enable_string_cache(False)
14
-
15
- dash.register_page(__name__, location="sidebar")
16
-
17
- dataset = "data10xflex/corg/all_polars"
18
-
19
- # Set custom resolution for plots:
20
- config_fig = {
21
- 'toImageButtonOptions': {
22
- 'format': 'svg',
23
- 'filename': 'custom_image',
24
- 'height': 600,
25
- 'width': 700,
26
- 'scale': 1,
27
- }
28
- }
29
- from adlfs import AzureBlobFileSystem
30
- mountpount=os.environ['AZURE_MOUNT_POINT'],
31
- AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
32
- AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
33
-
34
- # Load in config file
35
- config_path = "./data/config.yaml"
36
-
37
- # Add the read-in data from the yaml file
38
- def read_config(filename):
39
- with open(filename, 'r') as yaml_file:
40
- config = yaml.safe_load(yaml_file)
41
- return config
42
-
43
- config = read_config(config_path)
44
- path_parquet = config.get("path_parquet")
45
- col_batch = config.get("col_batch")
46
- col_features = config.get("col_features")
47
- col_counts = config.get("col_counts")
48
- col_mt = config.get("col_mt")
49
-
50
- #filepath = f"az://{path_parquet}"
51
-
52
- storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
53
- #azfs = AzureBlobFileSystem(**storage_options )
54
-
55
- # Load in multiple dataframes
56
- df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect()
57
-
58
- # Create the second tab content with scatter-plot_db10-5 and scatter-plot_db10-6
59
- tab2_content = html.Div([
60
- html.Div([
61
- html.Label("S-cycle genes"),
62
- dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
63
- options=["MCM5","PCNA","TYMS","FEN1","MCM2","MCM4","RRM1","UNG","GINS2","MCM6","CDCA7","DTL",
64
- "PRIM1","UHRF1","HELLS","RFC2","RPA2","NASP","RAD51AP1","GMNN","WDR76","SLBP","CCNE2","UBR7",
65
- "POLD3","MSH2","ATAD2","RAD51","RRM2","CDC45","CDC6","EXO1","TIPIN","DSCC1","BLM","CASP8AP2",
66
- "USP1","CLSPN","POLA1","CHAF1B","BRIP1","E2F8"]),
67
- html.Label("G2M-cycle genes"),
68
- dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
69
- options=["HMGB2","CDK1","NUSAP1","UBE2C","BIRC5","TPX2","TOP2A","NDC80","CKS2","NUF2","CKS1B","MKI67",
70
- "TMPO","CENPF","TACC3","SMC4","CCNB2","CKAP2L","CKAP2","AURKB","BUB1","KIF11","ANP32E","TUBB4B",
71
- "GTSE1","KIF20B","HJURP","CDCA3","CDC20","TTK","CDC25C","KIF2C","RANGAP1","NCAPD2","DLGAP5","CDCA2",
72
- "CDCA8","ECT2","KIF23","HMMR","AURKA","PSRC1","ANLN","LBR","CKAP5","CENPE","CTCF","NEK2","G2E3",
73
- "GAS2L3","CBX5","CENPA"]),
74
- ]),
75
- html.Div([
76
- dcc.Graph(id='scatter-plot_db10-5', figure={}, className='three columns',config=config_fig)
77
- ]),
78
- html.Div([
79
- dcc.Graph(id='scatter-plot_db10-6', figure={}, className='three columns',config=config_fig)
80
- ]),
81
- html.Div([
82
- dcc.Graph(id='scatter-plot_db10-7', figure={}, className='three columns',config=config_fig)
83
- ]),
84
- html.Div([
85
- dcc.Graph(id='scatter-plot_db10-8', figure={}, className='three columns',config=config_fig)
86
- ]),
87
- ])
88
-
89
- # Create the second tab content with scatter-plot_db10-5 and scatter-plot_db10-6
90
- tab3_content = html.Div([
91
- html.Div([
92
- html.Label("UMAP condition 1"),
93
- dcc.Dropdown(id='dpdn5', value="sample", multi=False,
94
- options=df.columns),
95
- html.Label("UMAP condition 2"),
96
- dcc.Dropdown(id='dpdn6', value="PAX6", multi=False,
97
- options=df.columns),
98
- html.Div([
99
- dcc.Graph(id='scatter-plot_db10-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
100
- ]),
101
- html.Div([
102
- dcc.Graph(id='scatter-plot_db10-10', figure={}, className='four columns', hoverData=None, config=config_fig)
103
- ]),
104
- html.Div([
105
- dcc.Graph(id='scatter-plot_db10-11', figure={}, className='four columns',config=config_fig)
106
- ]),
107
- html.Div([
108
- dcc.Graph(id='my-graph_db102', figure={}, clickData=None, hoverData=None,
109
- className='four columns',config=config_fig
110
- )
111
- ]),
112
- ]),
113
- ])
114
-
115
- tab4_content = html.Div([
116
- html.Label("Column chosen"),
117
- dcc.Dropdown(id='dpdn2', value="leiden_res_1.35", multi=False,
118
- options=df.columns),
119
- html.Div([
120
- html.Label("Multi gene"),
121
- dcc.Dropdown(id='dpdn7', value=['PAX6', 'TP63', 'OTX2', 'SIX3', 'LHX2', 'SIX6', 'SOX2', 'PMEL',
122
- 'RAX', 'LIN28A', 'ABCG2', 'KRT8', 'KRT7',
123
- 'KRT19', 'COL1A2', 'AQP1', 'LUM', 'TFAP2A', 'HAND1', 'S100A9',
124
- 'SPP1', 'TEK', 'FOXC2', 'PECAM1', 'SOX9'], multi=True,
125
- options=df.columns),
126
- ]),
127
- html.Div([
128
- dcc.Graph(id='scatter-plot_db10-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
129
- ]),
130
- ])
131
-
132
- # Define the tabs layout
133
- layout = html.Div([
134
- html.H1(f'Dataset analysis dashboard: {dataset}'),
135
- dcc.Tabs(id='tabs', style= {'width': 600,
136
- 'font-size': '100%',
137
- 'height': 50}, value='tab1',children=[
138
- #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
139
- #dcc.Tab(label='QC', value='tab1', children=tab1_content),
140
- dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content),
141
- dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
142
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
143
- ]),
144
- ])
145
-
146
- @callback(
147
- Output(component_id='scatter-plot_db10-5', component_property='figure'),
148
- Output(component_id='scatter-plot_db10-6', component_property='figure'),
149
- Output(component_id='scatter-plot_db10-7', component_property='figure'),
150
- Output(component_id='scatter-plot_db10-8', component_property='figure'),
151
- Output(component_id='scatter-plot_db10-9', component_property='figure'),
152
- Output(component_id='scatter-plot_db10-10', component_property='figure'),
153
- Output(component_id='scatter-plot_db10-11', component_property='figure'),
154
- Output(component_id='scatter-plot_db10-12', component_property='figure'),
155
- Output(component_id='my-graph_db102', component_property='figure'),
156
- Input(component_id='dpdn2', component_property='value'),
157
- Input(component_id='dpdn3', component_property='value'),
158
- Input(component_id='dpdn4', component_property='value'),
159
- Input(component_id='dpdn5', component_property='value'),
160
- Input(component_id='dpdn6', component_property='value'),
161
- Input(component_id='dpdn7', component_property='value'),
162
-
163
- )
164
-
165
- def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen,
166
- batch_chosen = df[col_chosen].unique().to_list()
167
- dff = df.filter(
168
- (pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
169
- )
170
- # Select ordering of plots
171
- if condition1_chosen == "integrated_cell_states":
172
- cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
173
- else:
174
- cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
175
-
176
- # Calculate the mean expression
177
-
178
- # Melt wide format DataFrame into long format
179
- # Specify batch column as string type and gene columns as float type
180
- list_conds = condition3_chosen
181
- list_conds += [col_chosen]
182
- dff_pre = dff.select(list_conds)
183
-
184
- # Melt wide format DataFrame into long format
185
- dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
186
-
187
- # Calculate the mean expression levels for each gene in each region
188
- expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() #
189
-
190
- # Calculate the percentage total expressed
191
- dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
192
- count = 1
193
- dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
194
- dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
195
- dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
196
- dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
197
- result = dff_5.select([
198
- pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
199
- .then(pl.col('len') / pl.col('total')*100)
200
- .otherwise(None).alias("%"),
201
- ])
202
- result = result.with_columns(pl.col("%").fill_null(0))
203
- dff_5[["percentage"]] = result[["%"]]
204
- dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
205
-
206
- # Final part to join the percentage expressed and mean expression levels
207
- expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
208
-
209
- fig_scatter_db10_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
210
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
211
- hover_name=None, title="S-cycle gene:",template="seaborn")
212
-
213
- fig_scatter_db10_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
214
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
215
- hover_name='sample', title="G2M-cycle gene:",template="seaborn")
216
-
217
- fig_scatter_db10_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
218
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
219
- hover_name='sample', title="S score:",template="seaborn")
220
-
221
- fig_scatter_db10_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
222
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
223
- hover_name='sample', title="G2M score:",template="seaborn")
224
-
225
- # Sort values of custom in-between
226
- dff = dff.sort(condition1_chosen)
227
-
228
- fig_scatter_db10_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
229
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
230
- hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
231
- fig_scatter_db10_9.update_traces(hoverinfo='none', hovertemplate=None)
232
- fig_scatter_db10_9.update_layout(hovermode=False)
233
-
234
- fig_scatter_db10_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
235
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
236
- hover_name='sample',template="seaborn")
237
-
238
- fig_scatter_db10_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
239
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
240
- hover_name='sample',template="seaborn",category_orders=cat_ord)
241
-
242
- # Reorder categories on natural sorting or on the integrated cell state order of the paper
243
- if col_chosen == "integrated_cell_states":
244
- fig_scatter_db10_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
245
- size="percentage", size_max = 20,
246
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
247
- hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
248
- else:
249
- fig_scatter_db10_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
250
- size="percentage", size_max = 20,
251
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
252
- hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
253
-
254
- fig_violin_db102 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
255
- color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)
256
-
257
-
258
- return fig_scatter_db10_5, fig_scatter_db10_6, fig_scatter_db10_7, fig_scatter_db10_8, fig_scatter_db10_9, fig_scatter_db10_10, fig_scatter_db10_11, fig_scatter_db10_12, fig_violin_db102 #fig_violin_db10, fig_pie_db10, fig_scatter_db10, fig_scatter_db10_2, fig_scatter_db10_3, fig_scatter_db10_4,
259
-
260
- # Set http://localhost:5000/ in web browser