Spaces:
Running
Running
Rename pages/dul_suture.py to pages/Suture.py
Browse files- pages/{dul_suture.py → Suture.py} +78 -270
pages/{dul_suture.py → Suture.py}
RENAMED
@@ -9,11 +9,12 @@ import dash_callback_chain
|
|
9 |
import yaml
|
10 |
import polars as pl
|
11 |
import os
|
12 |
-
|
|
|
13 |
|
14 |
dash.register_page(__name__, location="sidebar")
|
15 |
|
16 |
-
dataset = "datasuture/
|
17 |
|
18 |
# Set custom resolution for plots:
|
19 |
config_fig = {
|
@@ -48,116 +49,13 @@ col_mt = config.get("col_mt")
|
|
48 |
|
49 |
#filepath = f"az://{path_parquet}"
|
50 |
|
51 |
-
storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY
|
52 |
#azfs = AzureBlobFileSystem(**storage_options )
|
53 |
|
54 |
# Load in multiple dataframes
|
55 |
-
df = pl.
|
56 |
|
57 |
-
#
|
58 |
-
#external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
|
59 |
-
#app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
|
60 |
-
|
61 |
-
#df = pl.read_parquet(filepath,storage_options=storage_options)
|
62 |
-
#df = pl.DataFrame()
|
63 |
-
#abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
|
64 |
-
#df = df.rename({"__index_level_0__": "Unnamed: 0"})
|
65 |
-
|
66 |
-
#df1 = pl.read_parquet(filepath, storage_options=storage_options)
|
67 |
-
|
68 |
-
#df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
|
69 |
-
|
70 |
-
#tab0_content = html.Div([
|
71 |
-
# html.Label("Dataset chosen"),
|
72 |
-
# dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
|
73 |
-
# options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
74 |
-
#])
|
75 |
-
|
76 |
-
#@app.callback(
|
77 |
-
# Input(component_id='dpdn1', component_property='value')
|
78 |
-
#)
|
79 |
-
|
80 |
-
#def update_filepath(dpdn1):
|
81 |
-
# global df
|
82 |
-
# if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
|
83 |
-
# print("not identical filepath, chosing other")
|
84 |
-
# df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
|
85 |
-
# df = df2
|
86 |
-
# return
|
87 |
-
|
88 |
-
#df = pl.read_parquet(filepath, storage_options=storage_options)
|
89 |
-
min_value = df[col_features].min()
|
90 |
-
max_value = df[col_features].max()
|
91 |
-
|
92 |
-
min_value_2 = df[col_counts].min()
|
93 |
-
min_value_2 = round(min_value_2)
|
94 |
-
max_value_2 = df[col_counts].max()
|
95 |
-
max_value_2 = round(max_value_2)
|
96 |
-
|
97 |
-
min_value_3 = df[col_mt].min()
|
98 |
-
min_value_3 = round(min_value_3, 1)
|
99 |
-
max_value_3 = df[col_mt].max()
|
100 |
-
max_value_3 = round(max_value_3, 1)
|
101 |
-
|
102 |
-
# Loads in the conditions specified in the yaml file
|
103 |
-
|
104 |
-
# Note: Future version perhaps all values from a column in the dataframe of the parquet file
|
105 |
-
# Note 2: This could also be a tsv of the categories and own specified colors
|
106 |
-
#conditions = df[col_batch].unique().to_list()
|
107 |
-
# Create the first tab content
|
108 |
-
# Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
|
109 |
-
|
110 |
-
tab1_content = html.Div([
|
111 |
-
html.Label("Column chosen"),
|
112 |
-
dcc.Dropdown(id='dpdn2', value="batch", multi=False,
|
113 |
-
options=df.columns),
|
114 |
-
html.Label("N Genes by Counts"),
|
115 |
-
dcc.RangeSlider(
|
116 |
-
id='range-slider_db8-1',
|
117 |
-
step=250,
|
118 |
-
value=[min_value, max_value],
|
119 |
-
marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
|
120 |
-
),
|
121 |
-
dcc.Input(id='min-slider_db8-1', type='number', value=min_value, debounce=True),
|
122 |
-
dcc.Input(id='max-slider_db8-1', type='number', value=max_value, debounce=True),
|
123 |
-
html.Label("Total Counts"),
|
124 |
-
dcc.RangeSlider(
|
125 |
-
id='range-slider_db8-2',
|
126 |
-
step=7500,
|
127 |
-
value=[min_value_2, max_value_2],
|
128 |
-
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
|
129 |
-
),
|
130 |
-
dcc.Input(id='min-slider_db8-2', type='number', value=min_value_2, debounce=True),
|
131 |
-
dcc.Input(id='max-slider_db8-2', type='number', value=max_value_2, debounce=True),
|
132 |
-
html.Label("Percent Mitochondrial Genes"),
|
133 |
-
dcc.RangeSlider(
|
134 |
-
id='range-slider_db8-3',
|
135 |
-
step=5,
|
136 |
-
min=0,
|
137 |
-
max=100,
|
138 |
-
value=[min_value_3, max_value_3],
|
139 |
-
),
|
140 |
-
dcc.Input(id='min-slider_db8-3', type='number', value=min_value_3, debounce=True),
|
141 |
-
dcc.Input(id='max-slider_db8-3', type='number', value=max_value_3, debounce=True),
|
142 |
-
html.Div([
|
143 |
-
dcc.Graph(id='pie-graph_db8', figure={}, className='four columns',config=config_fig),
|
144 |
-
dcc.Graph(id='my-graph_db8', figure={}, clickData=None, hoverData=None,
|
145 |
-
className='four columns',config=config_fig
|
146 |
-
),
|
147 |
-
dcc.Graph(id='scatter-plot_db8', figure={}, className='four columns',config=config_fig)
|
148 |
-
]),
|
149 |
-
html.Div([
|
150 |
-
dcc.Graph(id='scatter-plot_db8-2', figure={}, className='four columns',config=config_fig)
|
151 |
-
]),
|
152 |
-
html.Div([
|
153 |
-
dcc.Graph(id='scatter-plot_db8-3', figure={}, className='four columns',config=config_fig)
|
154 |
-
]),
|
155 |
-
html.Div([
|
156 |
-
dcc.Graph(id='scatter-plot_db8-4', figure={}, className='four columns',config=config_fig)
|
157 |
-
]),
|
158 |
-
])
|
159 |
-
|
160 |
-
# Create the second tab content with scatter-plot_db8-5 and scatter-plot_db8-6
|
161 |
tab2_content = html.Div([
|
162 |
html.Div([
|
163 |
html.Label("S-cycle genes"),
|
@@ -264,60 +162,62 @@ tab2_content = html.Div([
|
|
264 |
"Psrc1",
|
265 |
"Gas2l3"
|
266 |
]),
|
267 |
-
|
268 |
]),
|
269 |
html.Div([
|
270 |
-
dcc.Graph(id='scatter-
|
271 |
]),
|
272 |
html.Div([
|
273 |
-
dcc.Graph(id='scatter-
|
274 |
]),
|
275 |
html.Div([
|
276 |
-
dcc.Graph(id='scatter-
|
277 |
]),
|
278 |
html.Div([
|
279 |
-
dcc.Graph(id='scatter-
|
280 |
]),
|
281 |
])
|
282 |
|
283 |
-
# Create the second tab content with scatter-
|
284 |
tab3_content = html.Div([
|
285 |
html.Div([
|
286 |
html.Label("UMAP condition 1"),
|
287 |
-
dcc.Dropdown(id='dpdn5', value="
|
288 |
options=df.columns),
|
289 |
html.Label("UMAP condition 2"),
|
290 |
-
dcc.Dropdown(id='dpdn6', value="
|
291 |
options=df.columns),
|
292 |
html.Div([
|
293 |
-
dcc.Graph(id='scatter-
|
294 |
]),
|
295 |
html.Div([
|
296 |
-
dcc.Graph(id='scatter-
|
297 |
]),
|
298 |
html.Div([
|
299 |
-
dcc.Graph(id='scatter-
|
300 |
]),
|
301 |
html.Div([
|
302 |
-
dcc.Graph(id='my-
|
303 |
className='four columns',config=config_fig
|
304 |
)
|
305 |
]),
|
306 |
]),
|
307 |
])
|
308 |
-
# html.Div([
|
309 |
-
# dcc.Graph(id='scatter-plot_db8-12', figure={}, className='four columns',config=config_fig)
|
310 |
-
# ]),
|
311 |
-
|
312 |
|
313 |
tab4_content = html.Div([
|
|
|
|
|
|
|
314 |
html.Div([
|
315 |
html.Label("Multi gene"),
|
316 |
-
dcc.Dropdown(id='dpdn7', value=["Pax6","
|
|
|
|
|
|
|
|
|
317 |
options=df.columns),
|
318 |
]),
|
319 |
html.Div([
|
320 |
-
dcc.Graph(id='scatter-
|
321 |
]),
|
322 |
])
|
323 |
|
@@ -328,107 +228,42 @@ layout = html.Div([
|
|
328 |
'font-size': '100%',
|
329 |
'height': 50}, value='tab1',children=[
|
330 |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
|
331 |
-
dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
332 |
-
dcc.Tab(label='
|
333 |
-
dcc.Tab(label='Custom', value='tab3', children=tab3_content),
|
334 |
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
|
|
|
335 |
]),
|
336 |
])
|
337 |
|
338 |
-
# Define the circular callback
|
339 |
@callback(
|
340 |
-
Output(
|
341 |
-
Output(
|
342 |
-
Output(
|
343 |
-
Output(
|
344 |
-
Output(
|
345 |
-
Output(
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
Input("max-slider_db8-2", "value"),
|
350 |
-
Input("min-slider_db8-3", "value"),
|
351 |
-
Input("max-slider_db8-3", "value"),
|
352 |
-
|
353 |
-
)
|
354 |
-
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
|
355 |
-
return min_1, max_1, min_2, max_2, min_3, max_3
|
356 |
-
|
357 |
-
@callback(
|
358 |
-
Output('range-slider_db8-1', 'value'),
|
359 |
-
Output('range-slider_db8-2', 'value'),
|
360 |
-
Output('range-slider_db8-3', 'value'),
|
361 |
-
Input('min-slider_db8-1', 'value'),
|
362 |
-
Input('max-slider_db8-1', 'value'),
|
363 |
-
Input('min-slider_db8-2', 'value'),
|
364 |
-
Input('max-slider_db8-2', 'value'),
|
365 |
-
Input('min-slider_db8-3', 'value'),
|
366 |
-
Input('max-slider_db8-3', 'value'),
|
367 |
-
|
368 |
-
)
|
369 |
-
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
370 |
-
return [min_1, max_1], [min_2, max_2], [min_3, max_3]
|
371 |
-
|
372 |
-
@callback(
|
373 |
-
Output(component_id='my-graph_db8', component_property='figure'),
|
374 |
-
Output(component_id='pie-graph_db8', component_property='figure'),
|
375 |
-
Output(component_id='scatter-plot_db8', component_property='figure'),
|
376 |
-
Output(component_id='scatter-plot_db8-2', component_property='figure'),
|
377 |
-
Output(component_id='scatter-plot_db8-3', component_property='figure'),
|
378 |
-
Output(component_id='scatter-plot_db8-4', component_property='figure'), # Add this new scatter plot
|
379 |
-
Output(component_id='scatter-plot_db8-5', component_property='figure'),
|
380 |
-
Output(component_id='scatter-plot_db8-6', component_property='figure'),
|
381 |
-
Output(component_id='scatter-plot_db8-7', component_property='figure'),
|
382 |
-
Output(component_id='scatter-plot_db8-8', component_property='figure'),
|
383 |
-
Output(component_id='scatter-plot_db8-9', component_property='figure'),
|
384 |
-
Output(component_id='scatter-plot_db8-10', component_property='figure'),
|
385 |
-
Output(component_id='scatter-plot_db8-11', component_property='figure'),
|
386 |
-
Output(component_id='scatter-plot_db8-12', component_property='figure'),
|
387 |
-
Output(component_id='my-graph_db82', component_property='figure'),
|
388 |
Input(component_id='dpdn2', component_property='value'),
|
389 |
Input(component_id='dpdn3', component_property='value'),
|
390 |
Input(component_id='dpdn4', component_property='value'),
|
391 |
Input(component_id='dpdn5', component_property='value'),
|
392 |
Input(component_id='dpdn6', component_property='value'),
|
393 |
Input(component_id='dpdn7', component_property='value'),
|
394 |
-
Input(component_id='range-slider_db8-1', component_property='value'),
|
395 |
-
Input(component_id='range-slider_db8-2', component_property='value'),
|
396 |
-
Input(component_id='range-slider_db8-3', component_property='value'),
|
397 |
|
398 |
)
|
399 |
|
400 |
-
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen
|
401 |
batch_chosen = df[col_chosen].unique().to_list()
|
402 |
dff = df.filter(
|
403 |
-
(pl.col(col_chosen).cast(str).is_in(batch_chosen))
|
404 |
-
(pl.col(col_features) >= range_value_1[0]) &
|
405 |
-
(pl.col(col_features) <= range_value_1[1]) &
|
406 |
-
(pl.col(col_counts) >= range_value_2[0]) &
|
407 |
-
(pl.col(col_counts) <= range_value_2[1]) &
|
408 |
-
(pl.col(col_mt) >= range_value_3[0]) &
|
409 |
-
(pl.col(col_mt) <= range_value_3[1])
|
410 |
)
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
# Plot figures
|
418 |
-
fig_violin_db8 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
|
419 |
-
color=col_chosen, hover_name=col_chosen,template="seaborn")
|
420 |
-
|
421 |
-
# Cache commonly used subexpressions
|
422 |
-
total_count = pl.lit(len(dff))
|
423 |
-
category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
|
424 |
-
category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
|
425 |
-
|
426 |
-
# Sort the dataframe
|
427 |
-
#category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
|
428 |
-
|
429 |
-
# Display the result
|
430 |
-
total_cells = total_count # Calculate total number of cells
|
431 |
-
pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
|
432 |
|
433 |
# Calculate the mean expression
|
434 |
|
@@ -440,9 +275,9 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
440 |
|
441 |
# Melt wide format DataFrame into long format
|
442 |
dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
|
443 |
-
|
444 |
# Calculate the mean expression levels for each gene in each region
|
445 |
-
expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
|
446 |
|
447 |
# Calculate the percentage total expressed
|
448 |
dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
|
@@ -461,82 +296,55 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
461 |
dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
|
462 |
|
463 |
# Final part to join the percentage expressed and mean expression levels
|
464 |
-
# TO DO
|
465 |
expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
|
466 |
-
|
467 |
-
# Order the dataframe on ascending categories
|
468 |
-
expression_means = expression_means.sort(col_chosen, descending=True)
|
469 |
-
|
470 |
-
#expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
|
471 |
-
category_counts = category_counts.sort(col_chosen)
|
472 |
-
|
473 |
-
fig_pie_db8 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
|
474 |
-
|
475 |
-
#labels = category_counts[col_chosen].to_list()
|
476 |
-
#values = category_counts["normalized_count"].to_list()
|
477 |
-
|
478 |
-
# Create the scatter plots
|
479 |
-
fig_scatter_db8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
|
480 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
481 |
-
hover_name='batch',template="seaborn")
|
482 |
-
|
483 |
-
fig_scatter_db8_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
|
484 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
485 |
-
hover_name='batch',template="seaborn")
|
486 |
-
|
487 |
-
fig_scatter_db8_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
|
488 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
489 |
-
hover_name='batch',template="seaborn")
|
490 |
-
|
491 |
-
|
492 |
-
fig_scatter_db8_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
|
493 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
494 |
-
hover_name='batch',template="seaborn")
|
495 |
|
496 |
-
|
497 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
498 |
-
hover_name=
|
499 |
|
500 |
-
|
501 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
502 |
-
hover_name='
|
503 |
|
504 |
-
|
505 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
506 |
-
hover_name='
|
507 |
|
508 |
-
|
509 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
510 |
-
hover_name='
|
511 |
|
512 |
# Sort values of custom in-between
|
513 |
dff = dff.sort(condition1_chosen)
|
514 |
|
515 |
-
|
516 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
517 |
-
hover_name=
|
|
|
|
|
518 |
|
519 |
-
|
520 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
521 |
-
hover_name='
|
522 |
|
523 |
-
|
524 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
525 |
-
hover_name='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
|
527 |
-
|
528 |
-
|
529 |
-
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
530 |
-
hover_name=col_chosen,template="seaborn")
|
531 |
-
|
532 |
-
fig_violin_db82 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
|
533 |
-
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
|
534 |
-
|
535 |
-
|
536 |
-
return fig_violin_db8, fig_pie_db8, fig_scatter_db8, fig_scatter_db8_2, fig_scatter_db8_3, fig_scatter_db8_4, fig_scatter_db8_5, fig_scatter_db8_6, fig_scatter_db8_7, fig_scatter_db8_8, fig_scatter_db8_9, fig_scatter_db8_10, fig_scatter_db8_11, fig_scatter_db8_12, fig_violin_db82
|
537 |
|
538 |
-
# Set http://localhost:5000/ in web browser
|
539 |
-
# Now create your regular FASTAPI application
|
540 |
|
541 |
-
|
542 |
-
# app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #
|
|
|
9 |
import yaml
|
10 |
import polars as pl
|
11 |
import os
|
12 |
+
from natsort import natsorted
|
13 |
+
#pl.enable_string_cache(False)
|
14 |
|
15 |
dash.register_page(__name__, location="sidebar")
|
16 |
|
17 |
+
dataset = "datasuture/pbs/Suture_polars"
|
18 |
|
19 |
# Set custom resolution for plots:
|
20 |
config_fig = {
|
|
|
49 |
|
50 |
#filepath = f"az://{path_parquet}"
|
51 |
|
52 |
+
storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #, 'anon': False
|
53 |
#azfs = AzureBlobFileSystem(**storage_options )
|
54 |
|
55 |
# Load in multiple dataframes
|
56 |
+
df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect()
|
57 |
|
58 |
+
# Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
tab2_content = html.Div([
|
60 |
html.Div([
|
61 |
html.Label("S-cycle genes"),
|
|
|
162 |
"Psrc1",
|
163 |
"Gas2l3"
|
164 |
]),
|
|
|
165 |
]),
|
166 |
html.Div([
|
167 |
+
dcc.Graph(id='scatter-plot_db0-5', figure={}, className='three columns',config=config_fig)
|
168 |
]),
|
169 |
html.Div([
|
170 |
+
dcc.Graph(id='scatter-plot_db0-6', figure={}, className='three columns',config=config_fig)
|
171 |
]),
|
172 |
html.Div([
|
173 |
+
dcc.Graph(id='scatter-plot_db0-7', figure={}, className='three columns',config=config_fig)
|
174 |
]),
|
175 |
html.Div([
|
176 |
+
dcc.Graph(id='scatter-plot_db0-8', figure={}, className='three columns',config=config_fig)
|
177 |
]),
|
178 |
])
|
179 |
|
180 |
+
# Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
|
181 |
tab3_content = html.Div([
|
182 |
html.Div([
|
183 |
html.Label("UMAP condition 1"),
|
184 |
+
dcc.Dropdown(id='dpdn5', value="condition", multi=False,
|
185 |
options=df.columns),
|
186 |
html.Label("UMAP condition 2"),
|
187 |
+
dcc.Dropdown(id='dpdn6', value="Pax6", multi=False,
|
188 |
options=df.columns),
|
189 |
html.Div([
|
190 |
+
dcc.Graph(id='scatter-plot_db0-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
|
191 |
]),
|
192 |
html.Div([
|
193 |
+
dcc.Graph(id='scatter-plot_db0-10', figure={}, className='four columns', hoverData=None, config=config_fig)
|
194 |
]),
|
195 |
html.Div([
|
196 |
+
dcc.Graph(id='scatter-plot_db0-11', figure={}, className='four columns',config=config_fig)
|
197 |
]),
|
198 |
html.Div([
|
199 |
+
dcc.Graph(id='my-graph_db02', figure={}, clickData=None, hoverData=None,
|
200 |
className='four columns',config=config_fig
|
201 |
)
|
202 |
]),
|
203 |
]),
|
204 |
])
|
|
|
|
|
|
|
|
|
205 |
|
206 |
tab4_content = html.Div([
|
207 |
+
html.Label("Column chosen"),
|
208 |
+
dcc.Dropdown(id='dpdn2', value="cell states", multi=False,
|
209 |
+
options=df.columns),
|
210 |
html.Div([
|
211 |
html.Label("Multi gene"),
|
212 |
+
dcc.Dropdown(id='dpdn7', value=["Pax6","Sox9","Cdk8","Il31ra","Gpha2",
|
213 |
+
"Areg","Krt13","Krt19","Psca","Muc20",
|
214 |
+
"S100a9","Lama3","Itgb4","Itga6","Thy1","Dcn","Scn7a",
|
215 |
+
"Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1",
|
216 |
+
"Abcg2","Lyve1","Mki67"], multi=True,
|
217 |
options=df.columns),
|
218 |
]),
|
219 |
html.Div([
|
220 |
+
dcc.Graph(id='scatter-plot_db0-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
|
221 |
]),
|
222 |
])
|
223 |
|
|
|
228 |
'font-size': '100%',
|
229 |
'height': 50}, value='tab1',children=[
|
230 |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
|
231 |
+
#dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
232 |
+
dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content),
|
|
|
233 |
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
|
234 |
+
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
|
235 |
]),
|
236 |
])
|
237 |
|
|
|
238 |
@callback(
|
239 |
+
Output(component_id='scatter-plot_db0-5', component_property='figure'),
|
240 |
+
Output(component_id='scatter-plot_db0-6', component_property='figure'),
|
241 |
+
Output(component_id='scatter-plot_db0-7', component_property='figure'),
|
242 |
+
Output(component_id='scatter-plot_db0-8', component_property='figure'),
|
243 |
+
Output(component_id='scatter-plot_db0-9', component_property='figure'),
|
244 |
+
Output(component_id='scatter-plot_db0-10', component_property='figure'),
|
245 |
+
Output(component_id='scatter-plot_db0-11', component_property='figure'),
|
246 |
+
Output(component_id='scatter-plot_db0-12', component_property='figure'),
|
247 |
+
Output(component_id='my-graph_db02', component_property='figure'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
Input(component_id='dpdn2', component_property='value'),
|
249 |
Input(component_id='dpdn3', component_property='value'),
|
250 |
Input(component_id='dpdn4', component_property='value'),
|
251 |
Input(component_id='dpdn5', component_property='value'),
|
252 |
Input(component_id='dpdn6', component_property='value'),
|
253 |
Input(component_id='dpdn7', component_property='value'),
|
|
|
|
|
|
|
254 |
|
255 |
)
|
256 |
|
257 |
+
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen,
|
258 |
batch_chosen = df[col_chosen].unique().to_list()
|
259 |
dff = df.filter(
|
260 |
+
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
)
|
262 |
+
# Select ordering of plots
|
263 |
+
if condition1_chosen == "integrated_cell_states":
|
264 |
+
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
|
265 |
+
else:
|
266 |
+
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
# Calculate the mean expression
|
269 |
|
|
|
275 |
|
276 |
# Melt wide format DataFrame into long format
|
277 |
dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
|
278 |
+
|
279 |
# Calculate the mean expression levels for each gene in each region
|
280 |
+
expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() #
|
281 |
|
282 |
# Calculate the percentage total expressed
|
283 |
dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
|
|
|
296 |
dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
|
297 |
|
298 |
# Final part to join the percentage expressed and mean expression levels
|
|
|
299 |
expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
fig_scatter_db0_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
302 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
303 |
+
hover_name=None, title="S-cycle gene:",template="seaborn")
|
304 |
|
305 |
+
fig_scatter_db0_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
|
306 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
307 |
+
hover_name='condition', title="G2M-cycle gene:",template="seaborn")
|
308 |
|
309 |
+
fig_scatter_db0_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
|
310 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
311 |
+
hover_name='condition', title="S score:",template="seaborn")
|
312 |
|
313 |
+
fig_scatter_db0_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
|
314 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
315 |
+
hover_name='condition', title="G2M score:",template="seaborn")
|
316 |
|
317 |
# Sort values of custom in-between
|
318 |
dff = dff.sort(condition1_chosen)
|
319 |
|
320 |
+
fig_scatter_db0_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
|
321 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
322 |
+
hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
|
323 |
+
fig_scatter_db0_9.update_traces(hoverinfo='none', hovertemplate=None)
|
324 |
+
fig_scatter_db0_9.update_layout(hovermode=False)
|
325 |
|
326 |
+
fig_scatter_db0_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
|
327 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
328 |
+
hover_name='condition',template="seaborn")
|
329 |
|
330 |
+
fig_scatter_db0_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
|
331 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
332 |
+
hover_name='condition',template="seaborn",category_orders=cat_ord)
|
333 |
+
|
334 |
+
# Reorder categories on natural sorting or on the integrated cell state order of the paper
|
335 |
+
if col_chosen == "integrated_cell_states":
|
336 |
+
fig_scatter_db0_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
337 |
+
size="percentage", size_max = 20,
|
338 |
+
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
339 |
+
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique())})
|
340 |
+
else:
|
341 |
+
fig_scatter_db0_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
342 |
+
size="percentage", size_max = 20,
|
343 |
+
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
344 |
+
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
|
345 |
|
346 |
+
fig_violin_db02 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
|
347 |
+
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
|
|
|
|
349 |
|
350 |
+
return fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02
|
|