File size: 12,943 Bytes
d18b9e4
 
 
 
 
 
 
 
 
 
 
8480f07
 
d18b9e4
 
 
d91d7b3
d18b9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f89c13
d18b9e4
 
 
 
 
 
8480f07
d18b9e4
 
d91d7b3
d18b9e4
 
 
 
 
 
8480f07
 
 
 
d18b9e4
 
8480f07
 
 
 
 
d18b9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f89c13
d18b9e4
 
7790ca2
d18b9e4
 
8480f07
d18b9e4
 
8480f07
d18b9e4
 
 
 
 
 
 
 
 
 
 
 
 
8480f07
4d9e85f
8480f07
d18b9e4
 
99c589e
d18b9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
8480f07
 
d18b9e4
8480f07
d18b9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8480f07
d18b9e4
 
8480f07
d18b9e4
8480f07
 
 
 
 
d18b9e4
 
 
 
 
 
 
 
 
 
 
8480f07
d18b9e4
8480f07
d18b9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8480f07
d18b9e4
 
 
2f89c13
d18b9e4
 
 
2f89c13
d18b9e4
 
 
2f89c13
d18b9e4
 
 
 
 
 
8480f07
 
 
d18b9e4
 
 
2f89c13
d18b9e4
 
 
2f89c13
8480f07
 
 
 
 
 
 
 
 
 
 
 
d18b9e4
 
8480f07
d18b9e4
 
8480f07
d18b9e4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
# Shoutout to Coding-with-Adam for the initial template of the project: 
# https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py

import dash
from dash import dcc, html, Output, Input, callback
import plotly.express as px
import dash_callback_chain
import yaml
import polars as pl
import os
from natsort import natsorted
#pl.enable_string_cache(False)

dash.register_page(__name__, location="sidebar")

dataset = "datasingleron/keratinocytes/singleron_keratinocytes_clusres_scVI"

# Set custom resolution for plots:
config_fig = {
  'toImageButtonOptions': {
    'format': 'svg',
    'filename': 'custom_image',
    'height': 600,
    'width': 700,
    'scale': 1,
  }
}
from adlfs import AzureBlobFileSystem
mountpount=os.environ['AZURE_MOUNT_POINT'],
AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')

# Load in config file
config_path = "./data/config.yaml"

# Add the read-in data from the yaml file
def read_config(filename):
    with open(filename, 'r') as yaml_file:
        config = yaml.safe_load(yaml_file)
    return config

config = read_config(config_path)
path_parquet = config.get("path_parquet")
col_batch = "batch_renamed"
col_features = config.get("col_features")
col_counts = config.get("col_counts")
col_mt = config.get("col_mt")

#filepath = f"az://{path_parquet}"

storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False

# Load in multiple dataframes
df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect()

# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
tab2_content = html.Div([
    html.Div([
            html.Label("S-cycle genes"),
            dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
                 options=["MCM5","PCNA","TYMS","FEN1","MCM2","MCM4","RRM1","UNG","GINS2","MCM6","CDCA7","DTL",
                          "PRIM1","UHRF1","HELLS","RFC2","RPA2","NASP","RAD51AP1","GMNN","WDR76","SLBP","CCNE2","UBR7",
                          "POLD3","MSH2","ATAD2","RAD51","RRM2","CDC45","CDC6","EXO1","TIPIN","DSCC1","BLM","CASP8AP2",
                          "USP1","CLSPN","POLA1","CHAF1B","BRIP1","E2F8"]),
            html.Label("G2M-cycle genes"),
            dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
                 options=["HMGB2","CDK1","NUSAP1","UBE2C","BIRC5","TPX2","TOP2A","NDC80","CKS2","NUF2","CKS1B","MKI67",
                          "TMPO","CENPF","TACC3","SMC4","CCNB2","CKAP2L","CKAP2","AURKB","BUB1","KIF11","ANP32E","TUBB4B",
                          "GTSE1","KIF20B","HJURP","CDCA3","CDC20","TTK","CDC25C","KIF2C","RANGAP1","NCAPD2","DLGAP5","CDCA2",
                          "CDCA8","ECT2","KIF23","HMMR","AURKA","PSRC1","ANLN","LBR","CKAP5","CENPE","CTCF","NEK2","G2E3",
                          "GAS2L3","CBX5","CENPA"]),
    ]),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-5', figure={}, className='three columns',config=config_fig)
    ]),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-6', figure={}, className='three columns',config=config_fig)
    ]),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-7', figure={}, className='three columns',config=config_fig)
    ]),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-8', figure={}, className='three columns',config=config_fig)
    ]),
])

# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
tab3_content = html.Div([
    html.Div([
            html.Label("UMAP condition 1"),
            dcc.Dropdown(id='dpdn5', value="batch_renamed", multi=False,
                 options=df.columns),
            html.Label("UMAP condition 2"),
            dcc.Dropdown(id='dpdn6', value="AREG", multi=False,
                 options=df.columns),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
    ]),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-10', figure={}, className='four columns', hoverData=None, config=config_fig)
    ]),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-11', figure={}, className='four columns',config=config_fig)
    ]),
    html.Div([
            dcc.Graph(id='my-graph_db22', figure={}, clickData=None, hoverData=None,
                  className='four columns',config=config_fig
                  )
    ]),
    ]),
])

tab4_content = html.Div([
     html.Label("Column chosen"),    
     dcc.Dropdown(id='dpdn2', value="leiden_0.45", multi=False,
                  options=df.columns),
    html.Div([
            html.Label("Multi gene"),
            dcc.Dropdown(id='dpdn7', value=["KRT4","VIM","KRT14","KRT15","AREG"], multi=True,
                 options=df.columns),
]),
    html.Div([
        dcc.Graph(id='scatter-plot_db2-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
    ]),
])

# Define the tabs layout
layout = html.Div([
    html.H1(f'Dataset analysis dashboard: {dataset}'),
    dcc.Tabs(id='tabs', style= {'width': 600,
        'font-size': '100%',
        'height': 50}, value='tab1',children=[
        #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
        #dcc.Tab(label='QC', value='tab1', children=tab1_content),
        dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content),
        dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
        dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
    ]),
])

@callback(
    Output(component_id='scatter-plot_db2-5', component_property='figure'),
    Output(component_id='scatter-plot_db2-6', component_property='figure'),
    Output(component_id='scatter-plot_db2-7', component_property='figure'),
    Output(component_id='scatter-plot_db2-8', component_property='figure'),
    Output(component_id='scatter-plot_db2-9', component_property='figure'),
    Output(component_id='scatter-plot_db2-10', component_property='figure'),
    Output(component_id='scatter-plot_db2-11', component_property='figure'),
    Output(component_id='scatter-plot_db2-12', component_property='figure'),
    Output(component_id='my-graph_db22', component_property='figure'),
    Input(component_id='dpdn2', component_property='value'),
    Input(component_id='dpdn3', component_property='value'),
    Input(component_id='dpdn4', component_property='value'),
    Input(component_id='dpdn5', component_property='value'),
    Input(component_id='dpdn6', component_property='value'),
    Input(component_id='dpdn7', component_property='value'),
     
)

def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen, 
    batch_chosen = df[col_chosen].unique().to_list()
    dff = df.filter(
        (pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
)
    # Select ordering of plots
    if condition1_chosen == "leiden_0.45":
        cat_ord= {condition1_chosen: ["1","2","3","4"]}
    else:
        cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}

    # Calculate the mean expression
    
    # Melt wide format DataFrame into long format
    # Specify batch column as string type and gene columns as float type
    list_conds = condition3_chosen
    list_conds += [col_chosen]
    dff_pre = dff.select(list_conds)
    
    # Melt wide format DataFrame into long format
    dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
    
    # Calculate the mean expression levels for each gene in each region
    expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() #
    
    # Calculate the percentage total expressed
    dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
    count = 1
    dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
    dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
    dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
    dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
    result = dff_5.select([
        pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
              .then(pl.col('len') / pl.col('total')*100)
              .otherwise(None).alias("%"),
    ])
    result = result.with_columns(pl.col("%").fill_null(0))
    dff_5[["percentage"]] = result[["%"]]
    dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))

    # Final part to join the percentage expressed and mean expression levels
    expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
    
    fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
                            labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                            hover_name=None, title="S-cycle gene:",template="seaborn")

    fig_scatter_db2_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
                            labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                            hover_name='batch_renamed', title="G2M-cycle gene:",template="seaborn")
    
    fig_scatter_db2_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
                            labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                            hover_name='batch_renamed', title="S score:",template="seaborn")
    
    fig_scatter_db2_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
                            labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                            hover_name='batch_renamed', title="G2M score:",template="seaborn")

    # Sort values of custom in-between
    dff = dff.sort(condition1_chosen)
    
    fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
                            labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                            hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
    fig_scatter_db2_9.update_traces(hoverinfo='none', hovertemplate=None)
    fig_scatter_db2_9.update_layout(hovermode=False)
    
    fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
                            labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                            hover_name='batch_renamed',template="seaborn")
    
    fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
                            #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                            hover_name='batch_renamed',template="seaborn",category_orders=cat_ord)

    # Reorder categories on natural sorting or on the integrated cell state order of the paper
    if col_chosen == "leiden_0.45":
        fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
                                    size="percentage", size_max = 20,
                                #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                                hover_name=col_chosen,template="seaborn",category_orders={col_chosen: ["1","2","3","4"],"Gene": condition3_chosen})
    else:                                                                                
        fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
                                    size="percentage", size_max = 20,
                                #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
                                hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
    
    fig_violin_db22 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
                            color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)


    return fig_scatter_db2_5, fig_scatter_db2_6, fig_scatter_db2_7, fig_scatter_db2_8, fig_scatter_db2_9, fig_scatter_db2_10, fig_scatter_db2_11, fig_scatter_db2_12, fig_violin_db22 #fig_violin_db2, fig_pie_db2, fig_scatter_db2, fig_scatter_db2_2, fig_scatter_db2_3, fig_scatter_db2_4, 

# Set http://localhost:5000/ in web browser
# Now create your regular FASTAPI application

#if __name__ == '__main__':
#    app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #