File size: 15,271 Bytes
699f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aca58a
699f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aca58a
 
699f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59eae08
 
699f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aca58a
699f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aca58a
 
699f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aca58a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from typing import Optional, Dict
import streamlit as st
import requests
import json
import fitz  # PyMuPDF
from fpdf import FPDF
import os
import tempfile
from dotenv import load_dotenv
import torch
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
from torch.nn.functional import softmax
from doctr.models import ocr_predictor
from doctr.io import DocumentFile
import tempfile

load_dotenv()

model = DistilBertForSequenceClassification.from_pretrained('./fine_tuned_distilbert')
tokenizer = DistilBertTokenizer.from_pretrained('./fine_tuned_distilbert')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
mapping = {"Remembering": 0, "Understanding": 1, "Applying": 2, "Analyzing": 3, "Evaluating": 4, "Creating": 5}
reverse_mapping = {v: k for k, v in mapping.items()}
modelocr = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True)

def save_uploaded_file(uploaded_file):
    if uploaded_file is not None:
        file_extension = uploaded_file.name.split('.')[-1].lower()
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix = f'.{file_extension}')
        temp_file.write(uploaded_file.getvalue())
        temp_file.close()
        return temp_file.name
    return None

# Previous functions from Question Generator
def get_pdf_path(pdf_source=None, uploaded_file=None):
    try:
        # If a file is uploaded locally
        if uploaded_file is not None:
            # Create a temporary file to save the uploaded PDF
            temp_dir = tempfile.mkdtemp()
            pdf_path = os.path.join(temp_dir, uploaded_file.name)
            
            # Save the uploaded file
            with open(pdf_path, "wb") as pdf_file:
                pdf_file.write(uploaded_file.getvalue())
            return pdf_path

        # If a URL is provided
        if pdf_source:
            response = requests.get(pdf_source, timeout=30)
            response.raise_for_status()
            
            # Create a temporary file
            temp_dir = tempfile.mkdtemp()
            pdf_path = os.path.join(temp_dir, "downloaded.pdf")
            
            with open(pdf_path, "wb") as pdf_file:
                pdf_file.write(response.content)
            return pdf_path

        # If no source is provided
        st.error("No PDF source provided.")
        return None
    except Exception as e:
        st.error(f"Error getting PDF: {e}")
        return None
    
    
def extract_text_pymupdf(pdf_path):
    try:
        doc = fitz.open(pdf_path)
        pages_content = []
        for page_num in range(len(doc)):
            page = doc[page_num]
            pages_content.append(page.get_text())
        doc.close()
        return " ".join(pages_content)  # Join all pages into one large context string
    except Exception as e:
        st.error(f"Error extracting text from PDF: {e}")
        return ""
    

def get_bloom_taxonomy_scores(question: str) -> Dict[str, float]:
    # Default scores in case of API failure
    default_scores = {
        "Remembering": 0.2,
        "Understanding": 0.2,
        "Applying": 0.15,
        "Analyzing": 0.15,
        "Evaluating": 0.15,
        "Creating": 0.15
    }
    
    try:
        scores = predict_with_loaded_model(question)
        for key, value in scores.items():
            if not (0 <= value <= 1):
                st.warning(f"Invalid score value for {key}. Using default scores.")
                return default_scores           
        return scores

    except Exception as e:
        st.warning(f"Unexpected error: {e}. Using default scores.")
        return default_scores
    
    
def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
    try:
        url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}"
        
        # Define length guidelines
        length_guidelines = {
            "Short": "Keep questions concise, around 10-15 words each.",
            "Medium": "Create moderately detailed questions, around 20-25 words each.",
            "Long": "Generate detailed, comprehensive questions, around 30-40 words each that may include multiple parts."
        }
        
        prompt = f"""
        You are a highly knowledgeable assistant. Your task is to assist the user with the following context from an academic paper.

        **Role**: {role_description}

        **Context**: {assistant_context}
        
        **User Query**: {user_input}

        **Instructions**: {response_instructions}
        Question Length Requirement: {length_guidelines[question_length]}

        **Bloom's Taxonomy Weights**:
        Knowledge: {bloom_taxonomy_weights['Knowledge']}%
        Comprehension: {bloom_taxonomy_weights['Comprehension']}%
        Application: {bloom_taxonomy_weights['Application']}%
        Analysis: {bloom_taxonomy_weights['Analysis']}%
        Synthesis: {bloom_taxonomy_weights['Synthesis']}%
        Evaluation: {bloom_taxonomy_weights['Evaluation']}%

        **Query**: {user_query}

        **Number of Questions**: {num_questions}

        **Include Numericals**: {include_numericals}
        """
        
        payload = {
            "contents": [
                {
                    "parts": [
                        {"text": prompt}
                    ]
                }
            ]
        }
        headers = {"Content-Type": "application/json"}

        response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60)
        response.raise_for_status()
        
        result = response.json()
        questions = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "")
        questions_list = [question.strip() for question in questions.split("\n") if question.strip()]
        
        # Get Bloom's taxonomy scores for each question with progress bar
        questions_with_scores = []
        progress_bar = st.progress(0)
        for idx, question in enumerate(questions_list):
            scores = get_bloom_taxonomy_scores(question)
            if scores:  # Only add questions that got valid scores
                questions_with_scores.append((question, scores))
            progress_bar.progress((idx + 1) / len(questions_list))
        
        if not questions_with_scores:
            st.warning("Could not get Bloom's Taxonomy scores for any questions. Using default scores.")
            # Use default scores if no scores were obtained
            questions_with_scores = [(q, get_bloom_taxonomy_scores("")) for q in questions_list]
        
        # Update session state with scores
        st.session_state.question_scores = {q: s for q, s in questions_with_scores}
        
        # Return just the questions
        return [q for q, _ in questions_with_scores]
    except requests.RequestException as e:
        st.error(f"API request error: {e}")
        return []
    except Exception as e:
        st.error(f"Error generating questions: {e}")
        return []

def normalize_bloom_weights(bloom_weights):
    total = sum(bloom_weights.values())
    if total != 100:
        normalization_factor = 100 / total
        # Normalize each weight by multiplying it by the normalization factor
        bloom_weights = {key: round(value * normalization_factor, 2) for key, value in bloom_weights.items()}
    return bloom_weights

def generate_pdf(questions, filename="questions.pdf"):
    try:
        pdf = FPDF()
        pdf.set_auto_page_break(auto=True, margin=15)
        pdf.add_page()

        # Set font
        pdf.add_font("ArialUnicode", "", "ArialUnicodeMS.ttf", uni=True)
        pdf.set_font("ArialUnicode", size=12)
        
        # Add a title or heading
        pdf.cell(200, 10, txt="Generated Questions", ln=True, align="C")

        # Add space between title and questions
        pdf.ln(10)

        # Loop through questions and add them to the PDF
        for i, question in enumerate(questions, 1):
            # Using multi_cell for wrapping the text in case it's too long
            pdf.multi_cell(0, 10, f"Q{i}: {question}")

        # Save the generated PDF to the file
        pdf.output(filename)
        return filename
    except Exception as e:
        st.error(f"Error generating PDF: {e}")
        return None

def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
    try:

        pdf_path = get_pdf_path(pdf_source, uploaded_file)
        if not pdf_path:
            return []

        # Extract text
        pdf_text = extract_text_pymupdf(pdf_path)
        if not pdf_text:
            return []
        # Generate questions
        assistant_context = pdf_text
        user_query = "Generate questions based on the above context."
        normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights)
        questions = generate_ai_response(
            api_key, 
            assistant_context, 
            user_query, 
            role_description, 
            response_instructions, 
            normalized_bloom_weights, 
            num_questions,
            question_length,
            include_numericals,
            user_input
        )

        # Clean up temporary PDF file
        try:
            os.remove(pdf_path)
            # Remove the temporary directory
            os.rmdir(os.path.dirname(pdf_path))
        except Exception as e:
            st.warning(f"Could not delete temporary PDF file: {e}")

        return questions
    except Exception as e:
        st.error(f"Error processing PDF and generating questions: {e}")
        return []
    
def get_bloom_taxonomy_details(question_scores: Optional[Dict[str, float]] = None) -> str:
    """
    Generate a detailed explanation of Bloom's Taxonomy scores.
    Handles missing or invalid scores gracefully.
    """
    try:
        if question_scores is None or not isinstance(question_scores, dict):
            return "Bloom's Taxonomy scores not available"
        
        # Validate scores
        valid_categories = {"Remembering", "Understanding", "Applying", 
                          "Analyzing", "Evaluating", "Creating"}
        
        if not all(isinstance(score, (int, float)) for score in question_scores.values()):
            return "Invalid score values detected"
            
        if not all(category in valid_categories for category in question_scores.keys()):
            return "Invalid score categories detected"
        
        details_text = "Bloom's Taxonomy Analysis:\n\n"
        
        try:
            # Sort scores by value in descending order
            sorted_scores = sorted(question_scores.items(), key=lambda x: x[1], reverse=True)
            
            # Format each score as a percentage
            for category, score in sorted_scores:
                percentage = min(max(score * 100, 0), 100)  # Ensure percentage is between 0 and 100
                details_text += f"{category}: {percentage:.1f}%\n"
            
            # Add the predicted level
            predicted_level = max(question_scores.items(), key=lambda x: x[1])[0]
            details_text += f"\nPredicted Level: {predicted_level}"
            
            return details_text.strip()
            
        except Exception as e:
            return f"Error processing scores: {str(e)}"
            
    except Exception as e:
        return f"Error generating taxonomy details: {str(e)}"
    
       
def predict_with_loaded_model(text):
    inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
    input_ids = inputs['input_ids'].to(device)
    model.eval()
    with torch.no_grad():
        outputs = model(input_ids)
        logits = outputs.logits
        probabilities = softmax(logits, dim=-1)
    probabilities = probabilities.squeeze().cpu().numpy()
    # Convert to float and format to 3 decimal places
    class_probabilities = {reverse_mapping[i]: float(f"{prob:.3f}") for i, prob in enumerate(probabilities)}
    return class_probabilities

def process_document(input_path):
    if input_path.lower().endswith(".pdf"):
        doc = DocumentFile.from_pdf(input_path)
        #print(f"Number of pages: {len(doc)}")
    elif input_path.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".tiff")):
        doc = DocumentFile.from_images(input_path)
    else:
        raise ValueError("Unsupported file type. Please provide a PDF or an image file.")
    result = modelocr(doc)
    def calculate_average_confidence(result):
        total_confidence = 0
        word_count = 0
        for page in result.pages:
            for block in page.blocks:
                for line in block.lines:
                    for word in line.words:
                        total_confidence += word.confidence
                        word_count += 1
        average_confidence = total_confidence / word_count if word_count > 0 else 0
        return average_confidence
    average_confidence = calculate_average_confidence(result)
    string_result = result.render()
    return {'Avg_Confidence': average_confidence, 'String':string_result.split('\n')}

def sendtogemini(inputpath, question):
    if inputpath and inputpath.lower().endswith((".pdf", ".jpg", ".jpeg", ".png")):
        qw = process_document(inputpath)
    elif question:
        qw = {'String': [question]}
    else:
        raise ValueError("Unsupported file type. Please provide a PDF or an image file.")
    questionset = str(qw['String'])
    # send this prompt to gemini : 
    questionset += """You are given a list of text fragments containing questions fragments extracted by an ocr model. Your task is to:
    # only Merge the question fragments into complete and coherent questions.Don't answer then.
    # Separate each question , start a new question with @ to make them easily distinguishable for further processing."""
    url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={os.getenv('GEMINI_API_KEY')}"
    
    payload = {
            "contents": [
                {
                    "parts": [
                        {"text": questionset}
                    ]
                }
            ]
        }
    headers = {"Content-Type": "application/json"}

    response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60)
    result = response.json()
    res1 = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "")
    question = []
    for i in res1.split('\n'):
        i = i.strip()
        if len(i) > 0:
            if i[0] == '@':
                i = i[1:].strip().lower()
                if i[0] == 'q':
                    question.append(i[1:].strip())
                else:
                    question.append(i)
    data = []
    for i in question:
        d = {}
        d['question'] = i
        d['score'] = predict_with_loaded_model(i)
        data.append(d)
    return data