Spaces:
Sleeping
Sleeping
File size: 15,271 Bytes
699f7b6 5aca58a 699f7b6 5aca58a 699f7b6 59eae08 699f7b6 5aca58a 699f7b6 5aca58a 699f7b6 5aca58a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
from typing import Optional, Dict
import streamlit as st
import requests
import json
import fitz # PyMuPDF
from fpdf import FPDF
import os
import tempfile
from dotenv import load_dotenv
import torch
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
from torch.nn.functional import softmax
from doctr.models import ocr_predictor
from doctr.io import DocumentFile
import tempfile
load_dotenv()
model = DistilBertForSequenceClassification.from_pretrained('./fine_tuned_distilbert')
tokenizer = DistilBertTokenizer.from_pretrained('./fine_tuned_distilbert')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
mapping = {"Remembering": 0, "Understanding": 1, "Applying": 2, "Analyzing": 3, "Evaluating": 4, "Creating": 5}
reverse_mapping = {v: k for k, v in mapping.items()}
modelocr = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True)
def save_uploaded_file(uploaded_file):
if uploaded_file is not None:
file_extension = uploaded_file.name.split('.')[-1].lower()
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix = f'.{file_extension}')
temp_file.write(uploaded_file.getvalue())
temp_file.close()
return temp_file.name
return None
# Previous functions from Question Generator
def get_pdf_path(pdf_source=None, uploaded_file=None):
try:
# If a file is uploaded locally
if uploaded_file is not None:
# Create a temporary file to save the uploaded PDF
temp_dir = tempfile.mkdtemp()
pdf_path = os.path.join(temp_dir, uploaded_file.name)
# Save the uploaded file
with open(pdf_path, "wb") as pdf_file:
pdf_file.write(uploaded_file.getvalue())
return pdf_path
# If a URL is provided
if pdf_source:
response = requests.get(pdf_source, timeout=30)
response.raise_for_status()
# Create a temporary file
temp_dir = tempfile.mkdtemp()
pdf_path = os.path.join(temp_dir, "downloaded.pdf")
with open(pdf_path, "wb") as pdf_file:
pdf_file.write(response.content)
return pdf_path
# If no source is provided
st.error("No PDF source provided.")
return None
except Exception as e:
st.error(f"Error getting PDF: {e}")
return None
def extract_text_pymupdf(pdf_path):
try:
doc = fitz.open(pdf_path)
pages_content = []
for page_num in range(len(doc)):
page = doc[page_num]
pages_content.append(page.get_text())
doc.close()
return " ".join(pages_content) # Join all pages into one large context string
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
def get_bloom_taxonomy_scores(question: str) -> Dict[str, float]:
# Default scores in case of API failure
default_scores = {
"Remembering": 0.2,
"Understanding": 0.2,
"Applying": 0.15,
"Analyzing": 0.15,
"Evaluating": 0.15,
"Creating": 0.15
}
try:
scores = predict_with_loaded_model(question)
for key, value in scores.items():
if not (0 <= value <= 1):
st.warning(f"Invalid score value for {key}. Using default scores.")
return default_scores
return scores
except Exception as e:
st.warning(f"Unexpected error: {e}. Using default scores.")
return default_scores
def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
try:
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}"
# Define length guidelines
length_guidelines = {
"Short": "Keep questions concise, around 10-15 words each.",
"Medium": "Create moderately detailed questions, around 20-25 words each.",
"Long": "Generate detailed, comprehensive questions, around 30-40 words each that may include multiple parts."
}
prompt = f"""
You are a highly knowledgeable assistant. Your task is to assist the user with the following context from an academic paper.
**Role**: {role_description}
**Context**: {assistant_context}
**User Query**: {user_input}
**Instructions**: {response_instructions}
Question Length Requirement: {length_guidelines[question_length]}
**Bloom's Taxonomy Weights**:
Knowledge: {bloom_taxonomy_weights['Knowledge']}%
Comprehension: {bloom_taxonomy_weights['Comprehension']}%
Application: {bloom_taxonomy_weights['Application']}%
Analysis: {bloom_taxonomy_weights['Analysis']}%
Synthesis: {bloom_taxonomy_weights['Synthesis']}%
Evaluation: {bloom_taxonomy_weights['Evaluation']}%
**Query**: {user_query}
**Number of Questions**: {num_questions}
**Include Numericals**: {include_numericals}
"""
payload = {
"contents": [
{
"parts": [
{"text": prompt}
]
}
]
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60)
response.raise_for_status()
result = response.json()
questions = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "")
questions_list = [question.strip() for question in questions.split("\n") if question.strip()]
# Get Bloom's taxonomy scores for each question with progress bar
questions_with_scores = []
progress_bar = st.progress(0)
for idx, question in enumerate(questions_list):
scores = get_bloom_taxonomy_scores(question)
if scores: # Only add questions that got valid scores
questions_with_scores.append((question, scores))
progress_bar.progress((idx + 1) / len(questions_list))
if not questions_with_scores:
st.warning("Could not get Bloom's Taxonomy scores for any questions. Using default scores.")
# Use default scores if no scores were obtained
questions_with_scores = [(q, get_bloom_taxonomy_scores("")) for q in questions_list]
# Update session state with scores
st.session_state.question_scores = {q: s for q, s in questions_with_scores}
# Return just the questions
return [q for q, _ in questions_with_scores]
except requests.RequestException as e:
st.error(f"API request error: {e}")
return []
except Exception as e:
st.error(f"Error generating questions: {e}")
return []
def normalize_bloom_weights(bloom_weights):
total = sum(bloom_weights.values())
if total != 100:
normalization_factor = 100 / total
# Normalize each weight by multiplying it by the normalization factor
bloom_weights = {key: round(value * normalization_factor, 2) for key, value in bloom_weights.items()}
return bloom_weights
def generate_pdf(questions, filename="questions.pdf"):
try:
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
# Set font
pdf.add_font("ArialUnicode", "", "ArialUnicodeMS.ttf", uni=True)
pdf.set_font("ArialUnicode", size=12)
# Add a title or heading
pdf.cell(200, 10, txt="Generated Questions", ln=True, align="C")
# Add space between title and questions
pdf.ln(10)
# Loop through questions and add them to the PDF
for i, question in enumerate(questions, 1):
# Using multi_cell for wrapping the text in case it's too long
pdf.multi_cell(0, 10, f"Q{i}: {question}")
# Save the generated PDF to the file
pdf.output(filename)
return filename
except Exception as e:
st.error(f"Error generating PDF: {e}")
return None
def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
try:
pdf_path = get_pdf_path(pdf_source, uploaded_file)
if not pdf_path:
return []
# Extract text
pdf_text = extract_text_pymupdf(pdf_path)
if not pdf_text:
return []
# Generate questions
assistant_context = pdf_text
user_query = "Generate questions based on the above context."
normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights)
questions = generate_ai_response(
api_key,
assistant_context,
user_query,
role_description,
response_instructions,
normalized_bloom_weights,
num_questions,
question_length,
include_numericals,
user_input
)
# Clean up temporary PDF file
try:
os.remove(pdf_path)
# Remove the temporary directory
os.rmdir(os.path.dirname(pdf_path))
except Exception as e:
st.warning(f"Could not delete temporary PDF file: {e}")
return questions
except Exception as e:
st.error(f"Error processing PDF and generating questions: {e}")
return []
def get_bloom_taxonomy_details(question_scores: Optional[Dict[str, float]] = None) -> str:
"""
Generate a detailed explanation of Bloom's Taxonomy scores.
Handles missing or invalid scores gracefully.
"""
try:
if question_scores is None or not isinstance(question_scores, dict):
return "Bloom's Taxonomy scores not available"
# Validate scores
valid_categories = {"Remembering", "Understanding", "Applying",
"Analyzing", "Evaluating", "Creating"}
if not all(isinstance(score, (int, float)) for score in question_scores.values()):
return "Invalid score values detected"
if not all(category in valid_categories for category in question_scores.keys()):
return "Invalid score categories detected"
details_text = "Bloom's Taxonomy Analysis:\n\n"
try:
# Sort scores by value in descending order
sorted_scores = sorted(question_scores.items(), key=lambda x: x[1], reverse=True)
# Format each score as a percentage
for category, score in sorted_scores:
percentage = min(max(score * 100, 0), 100) # Ensure percentage is between 0 and 100
details_text += f"{category}: {percentage:.1f}%\n"
# Add the predicted level
predicted_level = max(question_scores.items(), key=lambda x: x[1])[0]
details_text += f"\nPredicted Level: {predicted_level}"
return details_text.strip()
except Exception as e:
return f"Error processing scores: {str(e)}"
except Exception as e:
return f"Error generating taxonomy details: {str(e)}"
def predict_with_loaded_model(text):
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
input_ids = inputs['input_ids'].to(device)
model.eval()
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits
probabilities = softmax(logits, dim=-1)
probabilities = probabilities.squeeze().cpu().numpy()
# Convert to float and format to 3 decimal places
class_probabilities = {reverse_mapping[i]: float(f"{prob:.3f}") for i, prob in enumerate(probabilities)}
return class_probabilities
def process_document(input_path):
if input_path.lower().endswith(".pdf"):
doc = DocumentFile.from_pdf(input_path)
#print(f"Number of pages: {len(doc)}")
elif input_path.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".tiff")):
doc = DocumentFile.from_images(input_path)
else:
raise ValueError("Unsupported file type. Please provide a PDF or an image file.")
result = modelocr(doc)
def calculate_average_confidence(result):
total_confidence = 0
word_count = 0
for page in result.pages:
for block in page.blocks:
for line in block.lines:
for word in line.words:
total_confidence += word.confidence
word_count += 1
average_confidence = total_confidence / word_count if word_count > 0 else 0
return average_confidence
average_confidence = calculate_average_confidence(result)
string_result = result.render()
return {'Avg_Confidence': average_confidence, 'String':string_result.split('\n')}
def sendtogemini(inputpath, question):
if inputpath and inputpath.lower().endswith((".pdf", ".jpg", ".jpeg", ".png")):
qw = process_document(inputpath)
elif question:
qw = {'String': [question]}
else:
raise ValueError("Unsupported file type. Please provide a PDF or an image file.")
questionset = str(qw['String'])
# send this prompt to gemini :
questionset += """You are given a list of text fragments containing questions fragments extracted by an ocr model. Your task is to:
# only Merge the question fragments into complete and coherent questions.Don't answer then.
# Separate each question , start a new question with @ to make them easily distinguishable for further processing."""
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={os.getenv('GEMINI_API_KEY')}"
payload = {
"contents": [
{
"parts": [
{"text": questionset}
]
}
]
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60)
result = response.json()
res1 = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "")
question = []
for i in res1.split('\n'):
i = i.strip()
if len(i) > 0:
if i[0] == '@':
i = i[1:].strip().lower()
if i[0] == 'q':
question.append(i[1:].strip())
else:
question.append(i)
data = []
for i in question:
d = {}
d['question'] = i
d['score'] = predict_with_loaded_model(i)
data.append(d)
return data
|