BloomScore / functionbloom.py
AruniAnkur's picture
Upload 3 files
59eae08 verified
raw
history blame
15.3 kB
from typing import Optional, Dict
import streamlit as st
import requests
import json
import fitz # PyMuPDF
from fpdf import FPDF
import os
import tempfile
from dotenv import load_dotenv
import torch
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
from torch.nn.functional import softmax
from doctr.models import ocr_predictor
from doctr.io import DocumentFile
import tempfile
load_dotenv()
model = DistilBertForSequenceClassification.from_pretrained('./fine_tuned_distilbert')
tokenizer = DistilBertTokenizer.from_pretrained('./fine_tuned_distilbert')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
mapping = {"Remembering": 0, "Understanding": 1, "Applying": 2, "Analyzing": 3, "Evaluating": 4, "Creating": 5}
reverse_mapping = {v: k for k, v in mapping.items()}
modelocr = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True)
def save_uploaded_file(uploaded_file):
if uploaded_file is not None:
file_extension = uploaded_file.name.split('.')[-1].lower()
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix = f'.{file_extension}')
temp_file.write(uploaded_file.getvalue())
temp_file.close()
return temp_file.name
return None
# Previous functions from Question Generator
def get_pdf_path(pdf_source=None, uploaded_file=None):
try:
# If a file is uploaded locally
if uploaded_file is not None:
# Create a temporary file to save the uploaded PDF
temp_dir = tempfile.mkdtemp()
pdf_path = os.path.join(temp_dir, uploaded_file.name)
# Save the uploaded file
with open(pdf_path, "wb") as pdf_file:
pdf_file.write(uploaded_file.getvalue())
return pdf_path
# If a URL is provided
if pdf_source:
response = requests.get(pdf_source, timeout=30)
response.raise_for_status()
# Create a temporary file
temp_dir = tempfile.mkdtemp()
pdf_path = os.path.join(temp_dir, "downloaded.pdf")
with open(pdf_path, "wb") as pdf_file:
pdf_file.write(response.content)
return pdf_path
# If no source is provided
st.error("No PDF source provided.")
return None
except Exception as e:
st.error(f"Error getting PDF: {e}")
return None
def extract_text_pymupdf(pdf_path):
try:
doc = fitz.open(pdf_path)
pages_content = []
for page_num in range(len(doc)):
page = doc[page_num]
pages_content.append(page.get_text())
doc.close()
return " ".join(pages_content) # Join all pages into one large context string
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
def get_bloom_taxonomy_scores(question: str) -> Dict[str, float]:
# Default scores in case of API failure
default_scores = {
"Remembering": 0.2,
"Understanding": 0.2,
"Applying": 0.15,
"Analyzing": 0.15,
"Evaluating": 0.15,
"Creating": 0.15
}
try:
scores = predict_with_loaded_model(question)
for key, value in scores.items():
if not (0 <= value <= 1):
st.warning(f"Invalid score value for {key}. Using default scores.")
return default_scores
return scores
except Exception as e:
st.warning(f"Unexpected error: {e}. Using default scores.")
return default_scores
def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
try:
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}"
# Define length guidelines
length_guidelines = {
"Short": "Keep questions concise, around 10-15 words each.",
"Medium": "Create moderately detailed questions, around 20-25 words each.",
"Long": "Generate detailed, comprehensive questions, around 30-40 words each that may include multiple parts."
}
prompt = f"""
You are a highly knowledgeable assistant. Your task is to assist the user with the following context from an academic paper.
**Role**: {role_description}
**Context**: {assistant_context}
**User Query**: {user_input}
**Instructions**: {response_instructions}
Question Length Requirement: {length_guidelines[question_length]}
**Bloom's Taxonomy Weights**:
Knowledge: {bloom_taxonomy_weights['Knowledge']}%
Comprehension: {bloom_taxonomy_weights['Comprehension']}%
Application: {bloom_taxonomy_weights['Application']}%
Analysis: {bloom_taxonomy_weights['Analysis']}%
Synthesis: {bloom_taxonomy_weights['Synthesis']}%
Evaluation: {bloom_taxonomy_weights['Evaluation']}%
**Query**: {user_query}
**Number of Questions**: {num_questions}
**Include Numericals**: {include_numericals}
"""
payload = {
"contents": [
{
"parts": [
{"text": prompt}
]
}
]
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60)
response.raise_for_status()
result = response.json()
questions = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "")
questions_list = [question.strip() for question in questions.split("\n") if question.strip()]
# Get Bloom's taxonomy scores for each question with progress bar
questions_with_scores = []
progress_bar = st.progress(0)
for idx, question in enumerate(questions_list):
scores = get_bloom_taxonomy_scores(question)
if scores: # Only add questions that got valid scores
questions_with_scores.append((question, scores))
progress_bar.progress((idx + 1) / len(questions_list))
if not questions_with_scores:
st.warning("Could not get Bloom's Taxonomy scores for any questions. Using default scores.")
# Use default scores if no scores were obtained
questions_with_scores = [(q, get_bloom_taxonomy_scores("")) for q in questions_list]
# Update session state with scores
st.session_state.question_scores = {q: s for q, s in questions_with_scores}
# Return just the questions
return [q for q, _ in questions_with_scores]
except requests.RequestException as e:
st.error(f"API request error: {e}")
return []
except Exception as e:
st.error(f"Error generating questions: {e}")
return []
def normalize_bloom_weights(bloom_weights):
total = sum(bloom_weights.values())
if total != 100:
normalization_factor = 100 / total
# Normalize each weight by multiplying it by the normalization factor
bloom_weights = {key: round(value * normalization_factor, 2) for key, value in bloom_weights.items()}
return bloom_weights
def generate_pdf(questions, filename="questions.pdf"):
try:
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
# Set font
pdf.add_font("ArialUnicode", "", "ArialUnicodeMS.ttf", uni=True)
pdf.set_font("ArialUnicode", size=12)
# Add a title or heading
pdf.cell(200, 10, txt="Generated Questions", ln=True, align="C")
# Add space between title and questions
pdf.ln(10)
# Loop through questions and add them to the PDF
for i, question in enumerate(questions, 1):
# Using multi_cell for wrapping the text in case it's too long
pdf.multi_cell(0, 10, f"Q{i}: {question}")
# Save the generated PDF to the file
pdf.output(filename)
return filename
except Exception as e:
st.error(f"Error generating PDF: {e}")
return None
def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
try:
pdf_path = get_pdf_path(pdf_source, uploaded_file)
if not pdf_path:
return []
# Extract text
pdf_text = extract_text_pymupdf(pdf_path)
if not pdf_text:
return []
# Generate questions
assistant_context = pdf_text
user_query = "Generate questions based on the above context."
normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights)
questions = generate_ai_response(
api_key,
assistant_context,
user_query,
role_description,
response_instructions,
normalized_bloom_weights,
num_questions,
question_length,
include_numericals,
user_input
)
# Clean up temporary PDF file
try:
os.remove(pdf_path)
# Remove the temporary directory
os.rmdir(os.path.dirname(pdf_path))
except Exception as e:
st.warning(f"Could not delete temporary PDF file: {e}")
return questions
except Exception as e:
st.error(f"Error processing PDF and generating questions: {e}")
return []
def get_bloom_taxonomy_details(question_scores: Optional[Dict[str, float]] = None) -> str:
"""
Generate a detailed explanation of Bloom's Taxonomy scores.
Handles missing or invalid scores gracefully.
"""
try:
if question_scores is None or not isinstance(question_scores, dict):
return "Bloom's Taxonomy scores not available"
# Validate scores
valid_categories = {"Remembering", "Understanding", "Applying",
"Analyzing", "Evaluating", "Creating"}
if not all(isinstance(score, (int, float)) for score in question_scores.values()):
return "Invalid score values detected"
if not all(category in valid_categories for category in question_scores.keys()):
return "Invalid score categories detected"
details_text = "Bloom's Taxonomy Analysis:\n\n"
try:
# Sort scores by value in descending order
sorted_scores = sorted(question_scores.items(), key=lambda x: x[1], reverse=True)
# Format each score as a percentage
for category, score in sorted_scores:
percentage = min(max(score * 100, 0), 100) # Ensure percentage is between 0 and 100
details_text += f"{category}: {percentage:.1f}%\n"
# Add the predicted level
predicted_level = max(question_scores.items(), key=lambda x: x[1])[0]
details_text += f"\nPredicted Level: {predicted_level}"
return details_text.strip()
except Exception as e:
return f"Error processing scores: {str(e)}"
except Exception as e:
return f"Error generating taxonomy details: {str(e)}"
def predict_with_loaded_model(text):
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
input_ids = inputs['input_ids'].to(device)
model.eval()
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits
probabilities = softmax(logits, dim=-1)
probabilities = probabilities.squeeze().cpu().numpy()
# Convert to float and format to 3 decimal places
class_probabilities = {reverse_mapping[i]: float(f"{prob:.3f}") for i, prob in enumerate(probabilities)}
return class_probabilities
def process_document(input_path):
if input_path.lower().endswith(".pdf"):
doc = DocumentFile.from_pdf(input_path)
#print(f"Number of pages: {len(doc)}")
elif input_path.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".tiff")):
doc = DocumentFile.from_images(input_path)
else:
raise ValueError("Unsupported file type. Please provide a PDF or an image file.")
result = modelocr(doc)
def calculate_average_confidence(result):
total_confidence = 0
word_count = 0
for page in result.pages:
for block in page.blocks:
for line in block.lines:
for word in line.words:
total_confidence += word.confidence
word_count += 1
average_confidence = total_confidence / word_count if word_count > 0 else 0
return average_confidence
average_confidence = calculate_average_confidence(result)
string_result = result.render()
return {'Avg_Confidence': average_confidence, 'String':string_result.split('\n')}
def sendtogemini(inputpath, question):
if inputpath and inputpath.lower().endswith((".pdf", ".jpg", ".jpeg", ".png")):
qw = process_document(inputpath)
elif question:
qw = {'String': [question]}
else:
raise ValueError("Unsupported file type. Please provide a PDF or an image file.")
questionset = str(qw['String'])
# send this prompt to gemini :
questionset += """You are given a list of text fragments containing questions fragments extracted by an ocr model. Your task is to:
# only Merge the question fragments into complete and coherent questions.Don't answer then.
# Separate each question , start a new question with @ to make them easily distinguishable for further processing."""
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={os.getenv('GEMINI_API_KEY')}"
payload = {
"contents": [
{
"parts": [
{"text": questionset}
]
}
]
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60)
result = response.json()
res1 = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "")
question = []
for i in res1.split('\n'):
i = i.strip()
if len(i) > 0:
if i[0] == '@':
i = i[1:].strip().lower()
if i[0] == 'q':
question.append(i[1:].strip())
else:
question.append(i)
data = []
for i in question:
d = {}
d['question'] = i
d['score'] = predict_with_loaded_model(i)
data.append(d)
return data