Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import os | |
from dotenv import load_dotenv | |
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader | |
from llama_index.core.readers.base import BaseReader | |
from llama_index.readers.file.paged_csv.base import PagedCSVReader | |
from llama_index.embeddings.openai import OpenAIEmbedding | |
from llama_index.llms.openai import OpenAI | |
from llama_index.vector_stores.faiss import FaissVectorStore | |
from llama_index.core.ingestion import IngestionPipeline | |
from langchain_community.document_loaders.csv_loader import CSVLoader | |
from langchain_community.vectorstores import FAISS as LangChainFAISS | |
from langchain.chains import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI | |
import faiss | |
# Load environment variables | |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") | |
#os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY") | |
# Global settings for LlamaIndex | |
EMBED_DIMENSION = 512 | |
Settings.llm = OpenAI(model="gpt-3.5-turbo") | |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION) | |
# Streamlit app | |
st.title("Chat w CSV Files - LangChain Vs LlamaIndex ") | |
# File uploader | |
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"]) | |
if uploaded_file: | |
# Save the uploaded file temporarily | |
temp_file_path = f"temp_{uploaded_file.name}" | |
with open(temp_file_path, "wb") as temp_file: | |
temp_file.write(uploaded_file.getbuffer()) | |
# Read and preview CSV data | |
data = pd.read_csv(temp_file_path) | |
st.write("Preview of uploaded data:") | |
st.dataframe(data) | |
# Tabs | |
tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"]) | |
# LangChain Tab | |
with tab1: | |
st.subheader("LangChain Query") | |
loader = CSVLoader(file_path=temp_file_path) | |
docs = loader.load_and_split() | |
# Preview the first document | |
if docs: | |
st.write("Preview of a document chunk (LangChain):") | |
st.text(docs[0].page_content) | |
# LangChain FAISS VectorStore | |
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION) | |
langchain_vector_store = LangChainFAISS( | |
embedding_function=OpenAIEmbeddings(), | |
index=langchain_index, | |
) | |
langchain_vector_store.add_documents(docs) | |
# LangChain Retrieval Chain | |
retriever = langchain_vector_store.as_retriever() | |
system_prompt = ( | |
"You are an assistant for question-answering tasks. " | |
"Use the following pieces of retrieved context to answer " | |
"the question. If you don't know the answer, say that you " | |
"don't know. Use three sentences maximum and keep the " | |
"answer concise.\n\n{context}" | |
) | |
prompt = ChatPromptTemplate.from_messages( | |
[("system", system_prompt), ("human", "{input}")] | |
) | |
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(), prompt) | |
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain) | |
# Query input for LangChain | |
query = st.text_input("Ask a question about your data (LangChain):") | |
if query: | |
answer = langchain_rag_chain.invoke({"input": query}) | |
st.write(f"Answer: {answer['answer']}") | |
# LlamaIndex Tab | |
with tab2: | |
st.subheader("LlamaIndex Query") | |
csv_reader = PagedCSVReader() | |
reader = SimpleDirectoryReader( | |
input_files=[temp_file_path], | |
file_extractor={".csv": csv_reader}, | |
) | |
docs = reader.load_data() | |
# Preview the first document | |
if docs: | |
st.write("Preview of a document chunk (LlamaIndex):") | |
st.text(docs[0].text) | |
# Initialize FAISS Vector Store | |
llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION) | |
llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index) | |
# Create the ingestion pipeline and process the data | |
pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs) | |
nodes = pipeline.run() | |
# Create a query engine | |
llama_index = VectorStoreIndex(nodes) | |
query_engine = llama_index.as_query_engine(similarity_top_k=3) | |
# Query input for LlamaIndex | |
query = st.text_input("Ask a question about your data (LlamaIndex):") | |
if query: | |
response = query_engine.query(query) | |
st.write(f"Answer: {response.response}") | |
# Cleanup temporary file | |
os.remove(temp_file_path) |