Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -98,6 +98,20 @@ if uploaded_file:
|
|
98 |
# β
Limit number of retrieved documents
|
99 |
retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 5})
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
# β
Query Processing
|
102 |
query = st.text_input("Ask a question about your data (LangChain):")
|
103 |
|
@@ -106,6 +120,7 @@ if uploaded_file:
|
|
106 |
retrieved_context = "\n\n".join([doc.page_content for doc in retriever.get_relevant_documents(query)])
|
107 |
retrieved_context = retrieved_context[:3000]
|
108 |
|
|
|
109 |
system_prompt = (
|
110 |
"You are an assistant for question-answering tasks. "
|
111 |
"Use the following pieces of retrieved context to answer "
|
@@ -118,9 +133,13 @@ if uploaded_file:
|
|
118 |
except Exception as e:
|
119 |
error_message = traceback.format_exc()
|
120 |
st.error(f"Error processing query: {e}")
|
121 |
-
st.text(error_message)
|
122 |
|
123 |
except Exception as e:
|
124 |
error_message = traceback.format_exc()
|
125 |
st.error(f"Error processing with LangChain: {e}")
|
126 |
-
st.text(error_message)
|
|
|
|
|
|
|
|
|
|
98 |
# β
Limit number of retrieved documents
|
99 |
retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 5})
|
100 |
|
101 |
+
# β
Create LangChain Query Execution Pipeline
|
102 |
+
system_prompt = (
|
103 |
+
"You are an assistant for question-answering tasks. "
|
104 |
+
"Use the following pieces of retrieved context to answer "
|
105 |
+
"the question. Keep the answer concise.\n\n{context}"
|
106 |
+
)
|
107 |
+
|
108 |
+
prompt = ChatPromptTemplate.from_messages(
|
109 |
+
[("system", system_prompt), ("human", "{input}")]
|
110 |
+
)
|
111 |
+
|
112 |
+
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
113 |
+
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
114 |
+
|
115 |
# β
Query Processing
|
116 |
query = st.text_input("Ask a question about your data (LangChain):")
|
117 |
|
|
|
120 |
retrieved_context = "\n\n".join([doc.page_content for doc in retriever.get_relevant_documents(query)])
|
121 |
retrieved_context = retrieved_context[:3000]
|
122 |
|
123 |
+
# β
Ensure that we use the retrieved context
|
124 |
system_prompt = (
|
125 |
"You are an assistant for question-answering tasks. "
|
126 |
"Use the following pieces of retrieved context to answer "
|
|
|
133 |
except Exception as e:
|
134 |
error_message = traceback.format_exc()
|
135 |
st.error(f"Error processing query: {e}")
|
136 |
+
st.text(error_message)
|
137 |
|
138 |
except Exception as e:
|
139 |
error_message = traceback.format_exc()
|
140 |
st.error(f"Error processing with LangChain: {e}")
|
141 |
+
st.text(error_message)
|
142 |
+
except Exception as e:
|
143 |
+
error_message = traceback.format_exc()
|
144 |
+
st.error(f"Error reading uploaded file: {e}")
|
145 |
+
st.text(error_message) #
|