Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.readers.file.paged_csv.base import PagedCSVReader
|
6 |
from llama_index.core import Settings, VectorStoreIndex
|
@@ -14,14 +15,18 @@ from langchain.chains import create_retrieval_chain
|
|
14 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
15 |
from langchain_core.prompts import ChatPromptTemplate
|
16 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
17 |
-
from langchain_core.documents import Document
|
18 |
import faiss
|
19 |
import tempfile
|
20 |
|
21 |
# Load environment variables
|
22 |
-
|
23 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
24 |
|
|
|
|
|
|
|
|
|
25 |
# Global settings for LlamaIndex
|
26 |
EMBED_DIMENSION = 512
|
27 |
Settings.llm = OpenAI(model="gpt-4o")
|
@@ -45,7 +50,7 @@ if uploaded_file:
|
|
45 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
46 |
temp_file.flush()
|
47 |
|
48 |
-
# Verify the temporary file (Display partial content)
|
49 |
st.write("Temporary file path:", temp_file_path)
|
50 |
with open(temp_file_path, "r") as f:
|
51 |
content = f.read()
|
@@ -55,23 +60,28 @@ if uploaded_file:
|
|
55 |
# Tabs for LangChain and LlamaIndex
|
56 |
tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])
|
57 |
|
58 |
-
# β
LangChain Processing
|
59 |
with tab1:
|
60 |
st.subheader("LangChain Query")
|
61 |
|
62 |
try:
|
63 |
-
# β
Convert CSV rows into LangChain Document objects
|
64 |
st.write("Processing CSV with a custom loader...")
|
65 |
documents = []
|
66 |
for _, row in data.iterrows():
|
67 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
68 |
-
doc = Document(page_content=content)
|
69 |
-
documents.append(doc)
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
# β
Create FAISS VectorStore
|
72 |
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
73 |
-
docstore = InMemoryDocstore()
|
74 |
-
index_to_docstore_id = {}
|
75 |
|
76 |
langchain_vector_store = LangChainFAISS(
|
77 |
embedding_function=OpenAIEmbeddings(),
|
@@ -82,23 +92,9 @@ if uploaded_file:
|
|
82 |
|
83 |
# β
Add properly formatted documents to FAISS
|
84 |
langchain_vector_store.add_documents(documents)
|
|
|
85 |
|
86 |
-
# β
|
87 |
-
retriever = langchain_vector_store.as_retriever()
|
88 |
-
system_prompt = (
|
89 |
-
"You are an assistant for question-answering tasks. "
|
90 |
-
"Use the following pieces of retrieved context to answer "
|
91 |
-
"the question. If you don't know the answer, say that you "
|
92 |
-
"don't know. Use three sentences maximum and keep the "
|
93 |
-
"answer concise.\n\n{context}"
|
94 |
-
)
|
95 |
-
prompt = ChatPromptTemplate.from_messages(
|
96 |
-
[("system", system_prompt), ("human", "{input}")]
|
97 |
-
)
|
98 |
-
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
99 |
-
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
100 |
-
|
101 |
-
# β
Query Input Field for LangChain
|
102 |
query = st.text_input("Ask a question about your data (LangChain):")
|
103 |
|
104 |
if query:
|
@@ -107,51 +103,16 @@ if uploaded_file:
|
|
107 |
answer = langchain_rag_chain.invoke({"input": query})
|
108 |
st.write(f"**Answer:** {answer['answer']}")
|
109 |
except Exception as e:
|
|
|
110 |
st.error(f"Error processing query: {e}")
|
|
|
111 |
|
112 |
except Exception as e:
|
|
|
113 |
st.error(f"Error processing with LangChain: {e}")
|
114 |
-
|
115 |
-
# β
LlamaIndex Processing
|
116 |
-
with tab2:
|
117 |
-
st.subheader("LlamaIndex Query")
|
118 |
-
|
119 |
-
try:
|
120 |
-
# Use PagedCSVReader to load CSV
|
121 |
-
st.write("Loading file with LlamaIndex PagedCSVReader...")
|
122 |
-
csv_reader = PagedCSVReader()
|
123 |
-
docs = csv_reader.load_from_file(temp_file_path)
|
124 |
-
|
125 |
-
# β
Create FAISS Vector Store
|
126 |
-
llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
127 |
-
llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index)
|
128 |
-
|
129 |
-
# β
Create ingestion pipeline and process data
|
130 |
-
pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs)
|
131 |
-
nodes = pipeline.run()
|
132 |
-
|
133 |
-
# β
Create a query engine
|
134 |
-
llama_index = VectorStoreIndex(nodes)
|
135 |
-
query_engine = llama_index.as_query_engine(similarity_top_k=3)
|
136 |
-
|
137 |
-
# β
Query Input Field for LlamaIndex
|
138 |
-
query_llama = st.text_input("Ask a question about your data (LlamaIndex):")
|
139 |
-
|
140 |
-
if query_llama:
|
141 |
-
try:
|
142 |
-
st.write("Processing your question...")
|
143 |
-
response = query_engine.query(query_llama)
|
144 |
-
st.write(f"**Answer:** {response.response}")
|
145 |
-
except Exception as e:
|
146 |
-
st.error(f"Error processing query: {e}")
|
147 |
-
|
148 |
-
except Exception as e:
|
149 |
-
st.error(f"Error processing with LlamaIndex: {e}")
|
150 |
-
|
151 |
-
finally:
|
152 |
-
# Clean up the temporary file
|
153 |
-
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|
154 |
-
os.remove(temp_file_path)
|
155 |
|
156 |
except Exception as e:
|
|
|
157 |
st.error(f"Error reading uploaded file: {e}")
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
+
import traceback
|
5 |
from dotenv import load_dotenv
|
6 |
from llama_index.readers.file.paged_csv.base import PagedCSVReader
|
7 |
from llama_index.core import Settings, VectorStoreIndex
|
|
|
15 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
16 |
from langchain_core.prompts import ChatPromptTemplate
|
17 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
18 |
+
from langchain_core.documents import Document
|
19 |
import faiss
|
20 |
import tempfile
|
21 |
|
22 |
# Load environment variables
|
23 |
+
|
24 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
25 |
|
26 |
+
# Check OpenAI API Key
|
27 |
+
if not os.getenv("OPENAI_API_KEY"):
|
28 |
+
st.error("β οΈ OpenAI API Key is missing! Please check your .env file or environment variables.")
|
29 |
+
|
30 |
# Global settings for LlamaIndex
|
31 |
EMBED_DIMENSION = 512
|
32 |
Settings.llm = OpenAI(model="gpt-4o")
|
|
|
50 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
51 |
temp_file.flush()
|
52 |
|
53 |
+
# Debugging: Verify the temporary file (Display partial content)
|
54 |
st.write("Temporary file path:", temp_file_path)
|
55 |
with open(temp_file_path, "r") as f:
|
56 |
content = f.read()
|
|
|
60 |
# Tabs for LangChain and LlamaIndex
|
61 |
tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])
|
62 |
|
63 |
+
# β
LangChain Processing
|
64 |
with tab1:
|
65 |
st.subheader("LangChain Query")
|
66 |
|
67 |
try:
|
68 |
+
# β
Convert CSV rows into LangChain Document objects
|
69 |
st.write("Processing CSV with a custom loader...")
|
70 |
documents = []
|
71 |
for _, row in data.iterrows():
|
72 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
73 |
+
doc = Document(page_content=content)
|
74 |
+
documents.append(doc)
|
75 |
+
|
76 |
+
# Print a sample document
|
77 |
+
if documents:
|
78 |
+
st.write("Sample processed document (LangChain):")
|
79 |
+
st.text(documents[0].page_content)
|
80 |
|
81 |
+
# β
Create FAISS VectorStore
|
82 |
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
83 |
+
docstore = InMemoryDocstore()
|
84 |
+
index_to_docstore_id = {}
|
85 |
|
86 |
langchain_vector_store = LangChainFAISS(
|
87 |
embedding_function=OpenAIEmbeddings(),
|
|
|
92 |
|
93 |
# β
Add properly formatted documents to FAISS
|
94 |
langchain_vector_store.add_documents(documents)
|
95 |
+
st.write("Documents successfully added to FAISS VectorStore.")
|
96 |
|
97 |
+
# β
Query Processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
query = st.text_input("Ask a question about your data (LangChain):")
|
99 |
|
100 |
if query:
|
|
|
103 |
answer = langchain_rag_chain.invoke({"input": query})
|
104 |
st.write(f"**Answer:** {answer['answer']}")
|
105 |
except Exception as e:
|
106 |
+
error_message = traceback.format_exc()
|
107 |
st.error(f"Error processing query: {e}")
|
108 |
+
st.text(error_message)
|
109 |
|
110 |
except Exception as e:
|
111 |
+
error_message = traceback.format_exc()
|
112 |
st.error(f"Error processing with LangChain: {e}")
|
113 |
+
st.text(error_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
except Exception as e:
|
116 |
+
error_message = traceback.format_exc()
|
117 |
st.error(f"Error reading uploaded file: {e}")
|
118 |
+
st.text(error_message)
|