File size: 3,472 Bytes
ed697ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
from argparse import Namespace
import os
from tqdm import tqdm
from PIL import Image
import numpy as np
import torch
from torch.utils.data import DataLoader
import sys
sys.path.append(".")
sys.path.append("..")
from datasets.augmentations import AgeTransformer
from configs import data_configs
from datasets.inference_dataset import InferenceDataset
from utils.common import tensor2im, log_image
from options.test_options import TestOptions
from models.psp import pSp
def run():
test_opts = TestOptions().parse()
assert len(test_opts.target_age.split(',')) == 1, "Style-mixing supports only one target age!"
mixed_path_results = os.path.join(test_opts.exp_dir, 'style_mixing', str(test_opts.target_age))
os.makedirs(mixed_path_results, exist_ok=True)
# update test options with options used during training
ckpt = torch.load(test_opts.checkpoint_path, map_location='cpu')
opts = ckpt['opts']
opts.update(vars(test_opts))
opts = Namespace(**opts)
net = pSp(opts)
net.eval()
net.cuda()
print(f'Loading dataset for {opts.dataset_type}')
dataset_args = data_configs.DATASETS[opts.dataset_type]
transforms_dict = dataset_args['transforms'](opts).get_transforms()
dataset = InferenceDataset(root=opts.data_path,
transform=transforms_dict['transform_inference'],
opts=opts)
dataloader = DataLoader(dataset,
batch_size=opts.test_batch_size,
shuffle=False,
num_workers=int(opts.test_workers),
drop_last=True)
age_transformer = AgeTransformer(target_age=opts.target_age)
latent_mask = [int(l) for l in opts.latent_mask.split(",")]
if opts.n_images is None:
opts.n_images = len(dataset)
global_i = 0
for i, input_batch in enumerate(tqdm(dataloader)):
if global_i >= opts.n_images:
break
with torch.no_grad():
input_age_batch = [age_transformer(img.cpu()).to('cuda') for img in input_batch]
input_age_batch = torch.stack(input_age_batch)
for image_idx, input_image in enumerate(input_age_batch):
# generate random vectors to inject into input image
vecs_to_inject = np.random.randn(opts.n_outputs_to_generate, 512).astype('float32')
multi_modal_outputs = []
for vec_to_inject in vecs_to_inject:
cur_vec = torch.from_numpy(vec_to_inject).unsqueeze(0).to("cuda")
# get latent vector to inject into our input image
_, latent_to_inject = net(cur_vec,
input_code=True,
return_latents=True)
# get output image with injected style vector
res = net(input_image.unsqueeze(0).to("cuda").float(),
latent_mask=latent_mask,
inject_latent=latent_to_inject,
alpha=opts.mix_alpha,
resize=opts.resize_outputs)
multi_modal_outputs.append(res[0])
# visualize multi modal outputs
input_im_path = dataset.paths[global_i]
image = input_batch[image_idx]
input_image = log_image(image, opts)
resize_amount = (256, 256) if opts.resize_outputs else (1024, 1024)
res = np.array(input_image.resize(resize_amount))
for output in multi_modal_outputs:
output = tensor2im(output)
res = np.concatenate([res, np.array(output.resize(resize_amount))], axis=1)
Image.fromarray(res).save(os.path.join(mixed_path_results, os.path.basename(input_im_path)))
global_i += 1
if __name__ == '__main__':
run()
|