File size: 3,188 Bytes
ed697ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch.nn as nn
import torch.nn.functional as F

"""
VGG implementation from [InterDigitalInc](https://github.com/InterDigitalInc/HRFAE/blob/master/nets.py)
"""

class VGG(nn.Module):
    def __init__(self, pool='max'):
        super(VGG, self).__init__()
        # vgg modules
        self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.fc6 = nn.Linear(25088, 4096, bias=True)
        self.fc7 = nn.Linear(4096, 4096, bias=True)
        self.fc8_101 = nn.Linear(4096, 101, bias=True)
        if pool == 'max':
            self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
        elif pool == 'avg':
            self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2)
            self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
            self.pool3 = nn.AvgPool2d(kernel_size=2, stride=2)
            self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
            self.pool5 = nn.AvgPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        out = {}
        out['r11'] = F.relu(self.conv1_1(x))
        out['r12'] = F.relu(self.conv1_2(out['r11']))
        out['p1'] = self.pool1(out['r12'])
        out['r21'] = F.relu(self.conv2_1(out['p1']))
        out['r22'] = F.relu(self.conv2_2(out['r21']))
        out['p2'] = self.pool2(out['r22'])
        out['r31'] = F.relu(self.conv3_1(out['p2']))
        out['r32'] = F.relu(self.conv3_2(out['r31']))
        out['r33'] = F.relu(self.conv3_3(out['r32']))
        out['p3'] = self.pool3(out['r33'])
        out['r41'] = F.relu(self.conv4_1(out['p3']))
        out['r42'] = F.relu(self.conv4_2(out['r41']))
        out['r43'] = F.relu(self.conv4_3(out['r42']))
        out['p4'] = self.pool4(out['r43'])
        out['r51'] = F.relu(self.conv5_1(out['p4']))
        out['r52'] = F.relu(self.conv5_2(out['r51']))
        out['r53'] = F.relu(self.conv5_3(out['r52']))
        out['p5'] = self.pool5(out['r53'])
        out['p5'] = out['p5'].view(out['p5'].size(0), -1)
        out['fc6'] = F.relu(self.fc6(out['p5']))
        out['fc7'] = F.relu(self.fc7(out['fc6']))
        out['fc8'] = self.fc8_101(out['fc7'])
        return out