File size: 14,195 Bytes
ed697ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import random
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')

import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F

from utils import common, train_utils
from criteria import id_loss, w_norm
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from datasets.augmentations import AgeTransformer
from criteria.lpips.lpips import LPIPS
from criteria.aging_loss import AgingLoss
from models.psp import pSp
from training.ranger import Ranger


class Coach:
	def __init__(self, opts):
		self.opts = opts

		self.global_step = 0

		self.device = 'cuda'
		self.opts.device = self.device

		# Initialize network
		self.net = pSp(self.opts).to(self.device)

		# Initialize loss
		self.mse_loss = nn.MSELoss().to(self.device).eval()
		if self.opts.lpips_lambda > 0:
			self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
		if self.opts.id_lambda > 0:
			self.id_loss = id_loss.IDLoss().to(self.device).eval()
		if self.opts.w_norm_lambda > 0:
			self.w_norm_loss = w_norm.WNormLoss(opts=self.opts)
		if self.opts.aging_lambda > 0:
			self.aging_loss = AgingLoss(self.opts)

		# Initialize optimizer
		self.optimizer = self.configure_optimizers()

		# Initialize dataset
		self.train_dataset, self.test_dataset = self.configure_datasets()
		self.train_dataloader = DataLoader(self.train_dataset,
										   batch_size=self.opts.batch_size,
										   shuffle=True,
										   num_workers=int(self.opts.workers),
										   drop_last=True)
		self.test_dataloader = DataLoader(self.test_dataset,
										  batch_size=self.opts.test_batch_size,
										  shuffle=False,
										  num_workers=int(self.opts.test_workers),
										  drop_last=True)

		self.age_transformer = AgeTransformer(target_age=self.opts.target_age)

		# Initialize logger
		log_dir = os.path.join(opts.exp_dir, 'logs')
		os.makedirs(log_dir, exist_ok=True)
		self.logger = SummaryWriter(log_dir=log_dir)

		# Initialize checkpoint dir
		self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
		os.makedirs(self.checkpoint_dir, exist_ok=True)
		self.best_val_loss = None
		if self.opts.save_interval is None:
			self.opts.save_interval = self.opts.max_steps

	def perform_forward_pass(self, x):
		y_hat, latent = self.net.forward(x, return_latents=True)
		return y_hat, latent

	def __set_target_to_source(self, x, input_ages):
		return [torch.cat((img, age * torch.ones((1, img.shape[1], img.shape[2])).to(self.device)))
				for img, age in zip(x, input_ages)]

	def train(self):
		self.net.train()
		while self.global_step < self.opts.max_steps:
			for batch_idx, batch in enumerate(self.train_dataloader):
				x, y = batch
				x, y = x.to(self.device).float(), y.to(self.device).float()
				self.optimizer.zero_grad()

				input_ages = self.aging_loss.extract_ages(x) / 100.

				# perform no aging in 33% of the time
				no_aging = random.random() <= (1. / 3)
				if no_aging:
					x_input = self.__set_target_to_source(x=x, input_ages=input_ages)
				else:
					x_input = [self.age_transformer(img.cpu()).to(self.device) for img in x]

				x_input = torch.stack(x_input)
				target_ages = x_input[:, -1, 0, 0]

				# perform forward/backward pass on real images
				y_hat, latent = self.perform_forward_pass(x_input)
				loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent,
														  target_ages=target_ages,
														  input_ages=input_ages,
														  no_aging=no_aging,
														  data_type="real")
				loss.backward()

				# perform cycle on generate images by setting the target ages to the original input ages
				y_hat_clone = y_hat.clone().detach().requires_grad_(True)
				input_ages_clone = input_ages.clone().detach().requires_grad_(True)
				y_hat_inverse = self.__set_target_to_source(x=y_hat_clone, input_ages=input_ages_clone)
				y_hat_inverse = torch.stack(y_hat_inverse)
				reverse_target_ages = y_hat_inverse[:, -1, 0, 0]
				y_recovered, latent_cycle = self.perform_forward_pass(y_hat_inverse)
				loss, cycle_loss_dict, cycle_id_logs = self.calc_loss(x, y, y_recovered, latent_cycle,
																	  target_ages=reverse_target_ages,
																	  input_ages=input_ages,
																	  no_aging=no_aging,
																	  data_type="cycle")
				loss.backward()
				self.optimizer.step()

				# combine the logs of both forwards
				for idx, cycle_log in enumerate(cycle_id_logs):
					id_logs[idx].update(cycle_log)
				loss_dict.update(cycle_loss_dict)
				loss_dict["loss"] = loss_dict["loss_real"] + loss_dict["loss_cycle"]

				# Logging related
				if self.global_step % self.opts.image_interval == 0 or \
						(self.global_step < 1000 and self.global_step % 25 == 0):
					self.parse_and_log_images(id_logs, x, y, y_hat, y_recovered,
											  title='images/train/faces')

				if self.global_step % self.opts.board_interval == 0:
					self.print_metrics(loss_dict, prefix='train')
					self.log_metrics(loss_dict, prefix='train')

				# Validation related
				val_loss_dict = None
				if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
					val_loss_dict = self.validate()
					if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
						self.best_val_loss = val_loss_dict['loss']
						self.checkpoint_me(val_loss_dict, is_best=True)

				if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
					if val_loss_dict is not None:
						self.checkpoint_me(val_loss_dict, is_best=False)
					else:
						self.checkpoint_me(loss_dict, is_best=False)

				if self.global_step == self.opts.max_steps:
					print('OMG, finished training!')
					break

				self.global_step += 1

	def validate(self):
		self.net.eval()
		agg_loss_dict = []
		for batch_idx, batch in enumerate(self.test_dataloader):
			x, y = batch
			with torch.no_grad():
				x, y = x.to(self.device).float(), y.to(self.device).float()

				input_ages = self.aging_loss.extract_ages(x) / 100.

				# perform no aging in 33% of the time
				no_aging = random.random() <= (1. / 3)
				if no_aging:
					x_input = self.__set_target_to_source(x=x, input_ages=input_ages)
				else:
					x_input = [self.age_transformer(img.cpu()).to(self.device) for img in x]

				x_input = torch.stack(x_input)
				target_ages = x_input[:, -1, 0, 0]

				# perform forward/backward pass on real images
				y_hat, latent = self.perform_forward_pass(x_input)
				_, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent,
														   target_ages=target_ages,
														   input_ages=input_ages,
														   no_aging=no_aging,
														   data_type="real")

				# perform cycle on generate images by setting the target ages to the original input ages
				y_hat_inverse = self.__set_target_to_source(x=y_hat, input_ages=input_ages)
				y_hat_inverse = torch.stack(y_hat_inverse)
				reverse_target_ages = y_hat_inverse[:, -1, 0, 0]
				y_recovered, latent_cycle = self.perform_forward_pass(y_hat_inverse)
				loss, cycle_loss_dict, cycle_id_logs = self.calc_loss(x, y, y_recovered, latent_cycle,
																	  target_ages=reverse_target_ages,
																	  input_ages=input_ages,
																	  no_aging=no_aging,
																	  data_type="cycle")

				# combine the logs of both forwards
				for idx, cycle_log in enumerate(cycle_id_logs):
					id_logs[idx].update(cycle_log)
				cur_loss_dict.update(cycle_loss_dict)
				cur_loss_dict["loss"] = cur_loss_dict["loss_real"] + cur_loss_dict["loss_cycle"]

			agg_loss_dict.append(cur_loss_dict)

			# Logging related
			self.parse_and_log_images(id_logs, x, y, y_hat, y_recovered, title='images/test/faces',
									  subscript='{:04d}'.format(batch_idx))

			# For first step just do sanity test on small amount of data
			if self.global_step == 0 and batch_idx >= 4:
				self.net.train()
				return None  # Do not log, inaccurate in first batch

		loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
		self.log_metrics(loss_dict, prefix='test')
		self.print_metrics(loss_dict, prefix='test')

		self.net.train()
		return loss_dict

	def checkpoint_me(self, loss_dict, is_best):
		save_name = 'best_model.pt' if is_best else f'iteration_{self.global_step}.pt'
		save_dict = self.__get_save_dict()
		checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
		torch.save(save_dict, checkpoint_path)
		with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
			if is_best:
				f.write('**Best**: Step - {}, '
						'Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict))
			else:
				f.write(f'Step - {self.global_step}, \n{loss_dict}\n')

	def configure_optimizers(self):
		params = list(self.net.encoder.parameters())
		if self.opts.train_decoder:
			params += list(self.net.decoder.parameters())
		if self.opts.optim_name == 'adam':
			optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
		else:
			optimizer = Ranger(params, lr=self.opts.learning_rate)
		return optimizer

	def configure_datasets(self):
		if self.opts.dataset_type not in data_configs.DATASETS.keys():
			Exception(f'{self.opts.dataset_type} is not a valid dataset_type')
		print(f'Loading dataset for {self.opts.dataset_type}')
		dataset_args = data_configs.DATASETS[self.opts.dataset_type]
		transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
		train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
									  target_root=dataset_args['train_target_root'],
									  source_transform=transforms_dict['transform_source'],
									  target_transform=transforms_dict['transform_gt_train'],
									  opts=self.opts)
		test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
									 target_root=dataset_args['test_target_root'],
									 source_transform=transforms_dict['transform_source'],
									 target_transform=transforms_dict['transform_test'],
									 opts=self.opts)
		print(f"Number of training samples: {len(train_dataset)}")
		print(f"Number of test samples: {len(test_dataset)}")
		return train_dataset, test_dataset

	def calc_loss(self, x, y, y_hat, latent, target_ages, input_ages, no_aging, data_type="real"):
		loss_dict = {}
		id_logs = []
		loss = 0.0
		if self.opts.id_lambda > 0:
			weights = None
			if self.opts.use_weighted_id_loss:  # compute weighted id loss only on forward pass
				age_diffs = torch.abs(target_ages - input_ages)
				weights = train_utils.compute_cosine_weights(x=age_diffs)
			loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x, label=data_type, weights=weights)
			loss_dict[f'loss_id_{data_type}'] = float(loss_id)
			loss_dict[f'id_improve_{data_type}'] = float(sim_improvement)
			loss = loss_id * self.opts.id_lambda
		if self.opts.l2_lambda > 0:
			loss_l2 = F.mse_loss(y_hat, y)
			loss_dict[f'loss_l2_{data_type}'] = float(loss_l2)
			if data_type == "real" and not no_aging:
				l2_lambda = self.opts.l2_lambda_aging
			else:
				l2_lambda = self.opts.l2_lambda
			loss += loss_l2 * l2_lambda
		if self.opts.lpips_lambda > 0:
			loss_lpips = self.lpips_loss(y_hat, y)
			loss_dict[f'loss_lpips_{data_type}'] = float(loss_lpips)
			if data_type == "real" and not no_aging:
				lpips_lambda = self.opts.lpips_lambda_aging
			else:
				lpips_lambda = self.opts.lpips_lambda
			loss += loss_lpips * lpips_lambda
		if self.opts.lpips_lambda_crop > 0:
			loss_lpips_crop = self.lpips_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
			loss_dict['loss_lpips_crop'] = float(loss_lpips_crop)
			loss += loss_lpips_crop * self.opts.lpips_lambda_crop
		if self.opts.l2_lambda_crop > 0:
			loss_l2_crop = F.mse_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
			loss_dict['loss_l2_crop'] = float(loss_l2_crop)
			loss += loss_l2_crop * self.opts.l2_lambda_crop
		if self.opts.w_norm_lambda > 0:
			loss_w_norm = self.w_norm_loss(latent, latent_avg=self.net.latent_avg)
			loss_dict[f'loss_w_norm_{data_type}'] = float(loss_w_norm)
			loss += loss_w_norm * self.opts.w_norm_lambda
		if self.opts.aging_lambda > 0:
			aging_loss, id_logs = self.aging_loss(y_hat, y, target_ages, id_logs, label=data_type)
			loss_dict[f'loss_aging_{data_type}'] = float(aging_loss)
			loss += aging_loss * self.opts.aging_lambda
		loss_dict[f'loss_{data_type}'] = float(loss)
		if data_type == "cycle":
			loss = loss * self.opts.cycle_lambda
		return loss, loss_dict, id_logs

	def log_metrics(self, metrics_dict, prefix):
		for key, value in metrics_dict.items():
			self.logger.add_scalar(f'{prefix}/{key}', value, self.global_step)

	def print_metrics(self, metrics_dict, prefix):
		print(f'Metrics for {prefix}, step {self.global_step}')
		for key, value in metrics_dict.items():
			print(f'\t{key} = ', value)

	def parse_and_log_images(self, id_logs, x, y, y_hat, y_recovered, title, subscript=None, display_count=2):
		im_data = []
		for i in range(display_count):
			cur_im_data = {
				'input_face': common.tensor2im(x[i]),
				'target_face': common.tensor2im(y[i]),
				'output_face': common.tensor2im(y_hat[i]),
				'recovered_face': common.tensor2im(y_recovered[i])
			}
			if id_logs is not None:
				for key in id_logs[i]:
					cur_im_data[key] = id_logs[i][key]
			im_data.append(cur_im_data)
		self.log_images(title, im_data=im_data, subscript=subscript)

	def log_images(self, name, im_data, subscript=None, log_latest=False):
		fig = common.vis_faces(im_data)
		step = self.global_step
		if log_latest:
			step = 0
		if subscript:
			path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step))
		else:
			path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step))
		os.makedirs(os.path.dirname(path), exist_ok=True)
		fig.savefig(path)
		plt.close(fig)

	def __get_save_dict(self):
		save_dict = {
			'state_dict': self.net.state_dict(),
			'opts': vars(self.opts)
		}
		# save the latent avg in state_dict for inference if truncation of w was used during training
		if self.net.latent_avg is not None:
			save_dict['latent_avg'] = self.net.latent_avg
		return save_dict