File size: 2,238 Bytes
ed697ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import torch
from torch import nn
import torch.nn.functional as F
from configs.paths_config import model_paths
from models.dex_vgg import VGG
class AgingLoss(nn.Module):
def __init__(self, opts):
super(AgingLoss, self).__init__()
self.age_net = VGG()
ckpt = torch.load(model_paths['age_predictor'], map_location="cpu")['state_dict']
ckpt = {k.replace('-', '_'): v for k, v in ckpt.items()}
self.age_net.load_state_dict(ckpt)
self.age_net.cuda()
self.age_net.eval()
self.min_age = 0
self.max_age = 100
self.opts = opts
def __get_predicted_age(self, age_pb):
predict_age_pb = F.softmax(age_pb)
predict_age = torch.zeros(age_pb.size(0)).type_as(predict_age_pb)
for i in range(age_pb.size(0)):
for j in range(age_pb.size(1)):
predict_age[i] += j * predict_age_pb[i][j]
return predict_age
def extract_ages(self, x):
x = F.interpolate(x, size=(224, 224), mode='bilinear')
predict_age_pb = self.age_net(x)['fc8']
predicted_age = self.__get_predicted_age(predict_age_pb)
return predicted_age
def forward(self, y_hat, y, target_ages, id_logs, label=None):
n_samples = y.shape[0]
if id_logs is None:
id_logs = []
input_ages = self.extract_ages(y) / 100.
output_ages = self.extract_ages(y_hat) / 100.
for i in range(n_samples):
# if id logs for the same exists, update the dictionary
if len(id_logs) > i:
id_logs[i].update({f'input_age_{label}': float(input_ages[i]) * 100,
f'output_age_{label}': float(output_ages[i]) * 100,
f'target_age_{label}': float(target_ages[i]) * 100})
# otherwise, create a new entry for the sample
else:
id_logs.append({f'input_age_{label}': float(input_ages[i]) * 100,
f'output_age_{label}': float(output_ages[i]) * 100,
f'target_age_{label}': float(target_ages[i]) * 100})
loss = F.mse_loss(output_ages, target_ages)
return loss, id_logs
|