File size: 7,390 Bytes
dfcc787 7671949 c65bf93 7ff9bfa 8571f8a c65bf93 14ac743 1670712 14ac743 c65bf93 dfcc787 19a2d28 dfcc787 8571f8a dfcc787 19a2d28 dfcc787 8cfb866 dfcc787 19a2d28 dfcc787 c65bf93 dfcc787 c65bf93 dfcc787 c65bf93 dfcc787 19a2d28 dfcc787 c65bf93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import subprocess
os.system("pip install gradio==3.50")
os.system("pip install dlib==19.24.2")
#############################################
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
###################################################
from argparse import Namespace
import pprint
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import cv2
import dlib
import matplotlib.pyplot as plt
import gradio as gr # Importing Gradio as gr
from tensorflow.keras.preprocessing.image import img_to_array
from huggingface_hub import hf_hub_download, login
from datasets.augmentations import AgeTransformer
from utils.common import tensor2im
from models.psp import pSp
# Huggingface login
login(token=os.getenv("TOKENKEY"))
# Download models from Huggingface
age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")
# Age prediction model setup
age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)
# Face detection and landmarks predictor setup
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# Load the pretrained aging model
EXPERIMENT_TYPE = 'ffhq_aging'
EXPERIMENT_DATA_ARGS = {
"ffhq_aging": {
"model_path": sam_ffhq_aging,
"transform": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
}
}
EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
model_path = EXPERIMENT_ARGS['model_path']
ckpt = torch.load(model_path, map_location='cpu')
opts = ckpt['opts']
pprint.pprint(opts)
opts['checkpoint_path'] = model_path
opts = Namespace(**opts)
net = pSp(opts)
net.eval()
net.cuda()
print('Model successfully loaded!')
def get_face_region(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
faces = detector(gray)
if len(faces) > 0:
return faces[0]
return None
def get_mouth_region(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
faces = detector(gray)
for face in faces:
landmarks = predictor(gray, face)
mouth_points = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(48, 68)]
return np.array(mouth_points, np.int32)
return None
def predict_age(image):
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(224, 224), mean=(104.0, 177.0, 123.0), swapRB=False)
age_net.setInput(blob)
predictions = age_net.forward()
predicted_age = np.dot(predictions[0], np.arange(0, 101)).flatten()[0]
return int(predicted_age)
def color_correct(source, target):
mean_src = np.mean(source, axis=(0, 1))
std_src = np.std(source, axis=(0, 1))
mean_tgt = np.mean(target, axis=(0, 1))
std_tgt = np.std(target, axis=(0, 1))
src_normalized = (source - mean_src) / std_src
src_corrected = (src_normalized * std_tgt) + mean_tgt
return np.clip(src_corrected, 0, 255).astype(np.uint8)
def replace_teeth(temp_image, aged_image):
temp_image = np.array(temp_image)
aged_image = np.array(aged_image)
temp_mouth = get_mouth_region(temp_image)
aged_mouth = get_mouth_region(aged_image)
if temp_mouth is None or aged_mouth is None:
return aged_image
temp_mask = np.zeros_like(temp_image)
cv2.fillConvexPoly(temp_mask, temp_mouth, (255, 255, 255))
temp_mouth_region = cv2.bitwise_and(temp_image, temp_mask)
temp_mouth_bbox = cv2.boundingRect(temp_mouth)
aged_mouth_bbox = cv2.boundingRect(aged_mouth)
temp_mouth_crop = temp_mouth_region[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
temp_mask_crop = temp_mask[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
temp_mouth_crop_resized = cv2.resize(temp_mouth_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
temp_mask_crop_resized = cv2.resize(temp_mask_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
aged_mouth_crop = aged_image[aged_mouth_bbox[1]:aged_mouth_bbox[1] + aged_mouth_bbox[3], aged_mouth_bbox[0]:aged_mouth_bbox[0] + aged_mouth_bbox[2]]
temp_mouth_crop_resized = color_correct(temp_mouth_crop_resized, aged_mouth_crop)
center = (aged_mouth_bbox[0] + aged_mouth_bbox[2] // 2, aged_mouth_bbox[1] + aged_mouth_bbox[3] // 2)
seamless_teeth = cv2.seamlessClone(temp_mouth_crop_resized, aged_image, temp_mask_crop_resized, center, cv2.NORMAL_CLONE)
return seamless_teeth
def run_alignment(image):
from scripts.align_all_parallel import align_face
temp_image_path = "/tmp/temp_image.jpg"
image.save(temp_image_path)
aligned_image = align_face(filepath=temp_image_path, predictor=predictor)
return aligned_image
def apply_aging(image, target_age):
img_transforms = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]['transform']
input_image = img_transforms(image)
age_transformers = [AgeTransformer(target_age=target_age)]
results = []
for age_transformer in age_transformers:
with torch.no_grad():
input_image_age = [age_transformer(input_image.cpu()).to('cuda')]
input_image_age = torch.stack(input_image_age)
result_tensor = net(input_image_age.to("cuda").float(), randomize_noise=False, resize=False)[0]
result_image = tensor2im(result_tensor)
results.append(np.array(result_image))
final_result = results[0]
return final_result
def process_image(uploaded_image):
# Loading images for good and bad teeth
temp_images_good = [Image.open(f"good_teeth/G{i}.JPG") for i in range(1, 5)]
temp_images_bad = [Image.open(f"bad_teeth/B{i}.jpeg") for i in range(1, 5)]
# Predicting the age
predicted_age = predict_age(uploaded_image)
target_age = predicted_age + 5
# Aligning the face in the uploaded image
aligned_image = run_alignment(uploaded_image)
# Applying aging effect
aged_image = apply_aging(aligned_image, target_age=target_age)
# Randomly selecting teeth images using index instead of np.random.choice
good_teeth_image = temp_images_good[np.random.randint(0, len(temp_images_good))]
bad_teeth_image = temp_images_bad[np.random.randint(0, len(temp_images_bad))]
# Replacing teeth in aged image
aged_image_good_teeth = replace_teeth(good_teeth_image, aged_image)
aged_image_bad_teeth = replace_teeth(bad_teeth_image, aged_image)
return aged_image_good_teeth, aged_image_bad_teeth
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Image(type="pil")],
title="Aging Effect with Teeth Replacement",
description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
)
iface.launch() |