File size: 7,390 Bytes
dfcc787
7671949
c65bf93
7ff9bfa
8571f8a
c65bf93
14ac743
 
1670712
 
 
 
14ac743
 
 
c65bf93
dfcc787
 
 
 
19a2d28
dfcc787
 
8571f8a
dfcc787
19a2d28
dfcc787
 
 
 
 
 
 
8cfb866
dfcc787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a2d28
dfcc787
 
 
 
 
 
c65bf93
dfcc787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c65bf93
dfcc787
c65bf93
dfcc787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a2d28
 
 
 
dfcc787
 
c65bf93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import subprocess

os.system("pip install gradio==3.50")
os.system("pip install dlib==19.24.2")

#############################################

import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

###################################################


from argparse import Namespace
import pprint
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import cv2
import dlib
import matplotlib.pyplot as plt
import gradio as gr  # Importing Gradio as gr
from tensorflow.keras.preprocessing.image import img_to_array
from huggingface_hub import hf_hub_download, login
from datasets.augmentations import AgeTransformer
from utils.common import tensor2im
from models.psp import pSp

# Huggingface login
login(token=os.getenv("TOKENKEY"))

# Download models from Huggingface
age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")

# Age prediction model setup
age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)

# Face detection and landmarks predictor setup
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

# Load the pretrained aging model
EXPERIMENT_TYPE = 'ffhq_aging'
EXPERIMENT_DATA_ARGS = {
    "ffhq_aging": {
        "model_path": sam_ffhq_aging,
        "transform": transforms.Compose([
            transforms.Resize((256, 256)),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])
    }
}
EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
model_path = EXPERIMENT_ARGS['model_path']
ckpt = torch.load(model_path, map_location='cpu')
opts = ckpt['opts']
pprint.pprint(opts)
opts['checkpoint_path'] = model_path
opts = Namespace(**opts)
net = pSp(opts)
net.eval()
net.cuda()

print('Model successfully loaded!')

def get_face_region(image):
    gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
    faces = detector(gray)
    if len(faces) > 0:
        return faces[0]
    return None

def get_mouth_region(image):
    gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
    faces = detector(gray)
    for face in faces:
        landmarks = predictor(gray, face)
        mouth_points = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(48, 68)]
        return np.array(mouth_points, np.int32)
    return None

def predict_age(image):
    image = np.array(image)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(224, 224), mean=(104.0, 177.0, 123.0), swapRB=False)
    age_net.setInput(blob)
    predictions = age_net.forward()
    predicted_age = np.dot(predictions[0], np.arange(0, 101)).flatten()[0]
    return int(predicted_age)

def color_correct(source, target):
    mean_src = np.mean(source, axis=(0, 1))
    std_src = np.std(source, axis=(0, 1))
    mean_tgt = np.mean(target, axis=(0, 1))
    std_tgt = np.std(target, axis=(0, 1))
    src_normalized = (source - mean_src) / std_src
    src_corrected = (src_normalized * std_tgt) + mean_tgt
    return np.clip(src_corrected, 0, 255).astype(np.uint8)

def replace_teeth(temp_image, aged_image):
    temp_image = np.array(temp_image)
    aged_image = np.array(aged_image)
    temp_mouth = get_mouth_region(temp_image)
    aged_mouth = get_mouth_region(aged_image)
    if temp_mouth is None or aged_mouth is None:
        return aged_image

    temp_mask = np.zeros_like(temp_image)
    cv2.fillConvexPoly(temp_mask, temp_mouth, (255, 255, 255))
    temp_mouth_region = cv2.bitwise_and(temp_image, temp_mask)
    temp_mouth_bbox = cv2.boundingRect(temp_mouth)
    aged_mouth_bbox = cv2.boundingRect(aged_mouth)
    temp_mouth_crop = temp_mouth_region[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
    temp_mask_crop = temp_mask[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
    temp_mouth_crop_resized = cv2.resize(temp_mouth_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
    temp_mask_crop_resized = cv2.resize(temp_mask_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
    aged_mouth_crop = aged_image[aged_mouth_bbox[1]:aged_mouth_bbox[1] + aged_mouth_bbox[3], aged_mouth_bbox[0]:aged_mouth_bbox[0] + aged_mouth_bbox[2]]
    temp_mouth_crop_resized = color_correct(temp_mouth_crop_resized, aged_mouth_crop)
    center = (aged_mouth_bbox[0] + aged_mouth_bbox[2] // 2, aged_mouth_bbox[1] + aged_mouth_bbox[3] // 2)
    seamless_teeth = cv2.seamlessClone(temp_mouth_crop_resized, aged_image, temp_mask_crop_resized, center, cv2.NORMAL_CLONE)
    return seamless_teeth

def run_alignment(image):
    from scripts.align_all_parallel import align_face
    temp_image_path = "/tmp/temp_image.jpg"
    image.save(temp_image_path)
    aligned_image = align_face(filepath=temp_image_path, predictor=predictor)
    return aligned_image

def apply_aging(image, target_age):
    img_transforms = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]['transform']
    input_image = img_transforms(image)
    age_transformers = [AgeTransformer(target_age=target_age)]
    results = []
    for age_transformer in age_transformers:
        with torch.no_grad():
            input_image_age = [age_transformer(input_image.cpu()).to('cuda')]
            input_image_age = torch.stack(input_image_age)
            result_tensor = net(input_image_age.to("cuda").float(), randomize_noise=False, resize=False)[0]
            result_image = tensor2im(result_tensor)
            results.append(np.array(result_image))
    final_result = results[0]
    return final_result

def process_image(uploaded_image):
    # Loading images for good and bad teeth
    temp_images_good = [Image.open(f"good_teeth/G{i}.JPG") for i in range(1, 5)]
    temp_images_bad = [Image.open(f"bad_teeth/B{i}.jpeg") for i in range(1, 5)]
    
    # Predicting the age
    predicted_age = predict_age(uploaded_image)
    target_age = predicted_age + 5
    
    # Aligning the face in the uploaded image
    aligned_image = run_alignment(uploaded_image)
    
    # Applying aging effect
    aged_image = apply_aging(aligned_image, target_age=target_age)
    
    # Randomly selecting teeth images using index instead of np.random.choice
    good_teeth_image = temp_images_good[np.random.randint(0, len(temp_images_good))]
    bad_teeth_image = temp_images_bad[np.random.randint(0, len(temp_images_bad))]
    
    # Replacing teeth in aged image
    aged_image_good_teeth = replace_teeth(good_teeth_image, aged_image)
    aged_image_bad_teeth = replace_teeth(bad_teeth_image, aged_image)
    
    return aged_image_good_teeth, aged_image_bad_teeth

iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Image(type="pil"), gr.Image(type="pil")],
    title="Aging Effect with Teeth Replacement",
    description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
)

iface.launch()