AshanGimhana's picture
Update app.py
13a83ac verified
raw
history blame
10.5 kB
import os
import subprocess
os.system("pip install gradio==3.50")
os.system("pip install dlib==19.24.2")
#############################################
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
###################################################
from argparse import Namespace
import pprint
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import cv2
import dlib
import matplotlib.pyplot as plt
import gradio as gr # Importing Gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.preprocessing.image import img_to_array
from huggingface_hub import hf_hub_download, login
from datasets.augmentations import AgeTransformer
from utils.common import tensor2im
from models.psp import pSp
# Huggingface login
login(token=os.getenv("TOKENKEY"))
########################################################################
############## tensorflow model for age calculation #######################
# If 'mse' is a custom function needed,
#custom_objects = {'mse': MeanSquaredError()}
#new_age_model = load_model("age_prediction_model.h5")
########################################################################
########################################################################
############## pytorch model for age calculation #######################
age_calc_model = torch.load('Custom_Age_prediction_model.pth')
########################################################################
# Download models from Huggingface
age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")
########################################################################
############## caffe model for age calculation #######################
# Age prediction model setup
#age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)
########################################################################
# Face detection and landmarks predictor setup
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# Load the pretrained aging model
EXPERIMENT_TYPE = 'ffhq_aging'
EXPERIMENT_DATA_ARGS = {
"ffhq_aging": {
"model_path": sam_ffhq_aging,
"transform": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
}
}
EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
model_path = EXPERIMENT_ARGS['model_path']
ckpt = torch.load(model_path, map_location='cpu')
opts = ckpt['opts']
pprint.pprint(opts)
opts['checkpoint_path'] = model_path
opts = Namespace(**opts)
net = pSp(opts)
net.eval()
net.cuda()
print('Model successfully loaded!')
def check_image_quality(image):
# Convert the image to grayscale
gray_image = np.array(image.convert("L"))
# Check for under/over-exposure using histogram
hist = exposure.histogram(gray_image)
low_exposure = hist[0][:5].sum() > 0.5 * hist[0].sum() # Significant pixels in dark range
high_exposure = hist[0][-5:].sum() > 0.5 * hist[0].sum() # Significant pixels in bright range
# Check sharpness using Laplacian variance
sharpness = cv2.Laplacian(np.array(image), cv2.CV_64F).var()
low_sharpness = sharpness < 70 # Threshold for sharpness
# Check overall quality
if low_exposure or high_exposure or low_sharpness:
return False # Image quality is insufficient
return True # Image quality is sufficient
# Functions for face and mouth region
def get_face_region(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
faces = detector(gray)
if len(faces) > 0:
return faces[0]
return None
def get_mouth_region(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
faces = detector(gray)
for face in faces:
landmarks = predictor(gray, face)
mouth_points = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(48, 68)]
return np.array(mouth_points, np.int32)
return None
# Function to predict age
# old tensorflow function for age predict
#def predict_age(image):
#image = np.array(image.resize((64, 64)))
#image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
#image = image / 255.0
#image = np.expand_dims(image, axis=0)
##### Predict age
#val = new_age_model.predict(np.array(image))
#age = val[0][0]
#return int(age)
def predict_age(image):
age_calc_model.eval()
# Load and preprocess the image
image = cv2.imread(image, cv2.IMREAD_GRAYSCALE) # Load as grayscale
image = cv2.resize(image, (64, 64)) # Resize to 64x64
image = image / 255.0 # Normalize pixel values to [0, 1]
image = np.expand_dims(image, axis=0) # Add batch dimension
image = np.expand_dims(image, axis=0) # Add channel dimension
image = torch.tensor(image, dtype=torch.float32).to(device)
# Convert to tensor
image_tensor = torch.tensor(image, dtype=torch.float32)
# Predict age
with torch.no_grad():
predicted_age = age_calc_model(image_tensor)
return int(predicted_age.item())
# Function for color correction
def color_correct(source, target):
mean_src = np.mean(source, axis=(0, 1))
std_src = np.std(source, axis=(0, 1))
mean_tgt = np.mean(target, axis=(0, 1))
std_tgt = np.std(target, axis=(0, 1))
src_normalized = (source - mean_src) / std_src
src_corrected = (src_normalized * std_tgt) + mean_tgt
return np.clip(src_corrected, 0, 255).astype(np.uint8)
# Function to replace teeth
def replace_teeth(temp_image, aged_image):
temp_image = np.array(temp_image)
aged_image = np.array(aged_image)
temp_mouth = get_mouth_region(temp_image)
aged_mouth = get_mouth_region(aged_image)
if temp_mouth is None or aged_mouth is None:
return aged_image
temp_mask = np.zeros_like(temp_image)
cv2.fillConvexPoly(temp_mask, temp_mouth, (255, 255, 255))
temp_mouth_region = cv2.bitwise_and(temp_image, temp_mask)
temp_mouth_bbox = cv2.boundingRect(temp_mouth)
aged_mouth_bbox = cv2.boundingRect(aged_mouth)
temp_mouth_crop = temp_mouth_region[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
temp_mask_crop = temp_mask[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
temp_mouth_crop_resized = cv2.resize(temp_mouth_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
temp_mask_crop_resized = cv2.resize(temp_mask_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
aged_mouth_crop = aged_image[aged_mouth_bbox[1]:aged_mouth_bbox[1] + aged_mouth_bbox[3], aged_mouth_bbox[0]:aged_mouth_bbox[0] + aged_mouth_bbox[2]]
temp_mouth_crop_resized = color_correct(temp_mouth_crop_resized, aged_mouth_crop)
center = (aged_mouth_bbox[0] + aged_mouth_bbox[2] // 2, aged_mouth_bbox[1] + aged_mouth_bbox[3] // 2)
seamless_teeth = cv2.seamlessClone(temp_mouth_crop_resized, aged_image, temp_mask_crop_resized, center, cv2.NORMAL_CLONE)
return seamless_teeth
# Function to run alignment
def run_alignment(image):
from scripts.align_all_parallel import align_face
temp_image_path = "/tmp/temp_image.jpg"
image.save(temp_image_path)
aligned_image = align_face(filepath=temp_image_path, predictor=predictor)
return aligned_image
# Function to apply aging
def apply_aging(image, target_age):
img_transforms = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]['transform']
input_image = img_transforms(image)
age_transformers = [AgeTransformer(target_age=target_age)]
results = []
for age_transformer in age_transformers:
with torch.no_grad():
input_image_age = [age_transformer(input_image.cpu()).to('cuda')]
input_image_age = torch.stack(input_image_age)
result_tensor = net(input_image_age.float(), randomize_noise=False, resize=False)[0]
result_image = tensor2im(result_tensor)
results.append(np.array(result_image))
final_result = results[0]
return final_result
# Function to process the image
def process_image(uploaded_image):
# Loading images for good and bad teeth
temp_images_good = [Image.open(f"good_teeth/G{i}.JPG") for i in range(1, 4)]
temp_images_bad = [Image.open(f"bad_teeth/B{i}.jpeg") for i in range(1, 5)]
# Predicting the age
predicted_age = predict_age(uploaded_image)
target_age = predicted_age + 5
# Aligning the face in the uploaded image
aligned_image = run_alignment(uploaded_image)
# Applying aging effect
aged_image = apply_aging(aligned_image, target_age=target_age)
# Randomly selecting teeth images
good_teeth_image = temp_images_good[np.random.randint(0, len(temp_images_good))]
bad_teeth_image = temp_images_bad[np.random.randint(0, len(temp_images_bad))]
# Replacing teeth in aged image
aged_image_good_teeth = replace_teeth(good_teeth_image, aged_image)
aged_image_bad_teeth = replace_teeth(bad_teeth_image, aged_image)
return aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age
# Gradio Interface
def show_results(uploaded_image):
# Perform quality check
if not check_image_quality(uploaded_image):
return None, None, "Not_Allowed"
# If quality is acceptable, continue with processing
aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age = process_image(uploaded_image)
return aged_image_good_teeth, aged_image_bad_teeth, f"Predicted Age: {predicted_age}, Target Age: {target_age}"
iface = gr.Interface(
fn=show_results,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Image(type="pil"), gr.Textbox()],
title="Aging Effect with Teeth Replacement",
description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
)
iface.launch()