Aging_MouthReplace / training /coach_aging.py
AshanGimhana's picture
Upload folder using huggingface_hub
ed697ed verified
raw
history blame
14.2 kB
import os
import random
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from utils import common, train_utils
from criteria import id_loss, w_norm
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from datasets.augmentations import AgeTransformer
from criteria.lpips.lpips import LPIPS
from criteria.aging_loss import AgingLoss
from models.psp import pSp
from training.ranger import Ranger
class Coach:
def __init__(self, opts):
self.opts = opts
self.global_step = 0
self.device = 'cuda'
self.opts.device = self.device
# Initialize network
self.net = pSp(self.opts).to(self.device)
# Initialize loss
self.mse_loss = nn.MSELoss().to(self.device).eval()
if self.opts.lpips_lambda > 0:
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
if self.opts.id_lambda > 0:
self.id_loss = id_loss.IDLoss().to(self.device).eval()
if self.opts.w_norm_lambda > 0:
self.w_norm_loss = w_norm.WNormLoss(opts=self.opts)
if self.opts.aging_lambda > 0:
self.aging_loss = AgingLoss(self.opts)
# Initialize optimizer
self.optimizer = self.configure_optimizers()
# Initialize dataset
self.train_dataset, self.test_dataset = self.configure_datasets()
self.train_dataloader = DataLoader(self.train_dataset,
batch_size=self.opts.batch_size,
shuffle=True,
num_workers=int(self.opts.workers),
drop_last=True)
self.test_dataloader = DataLoader(self.test_dataset,
batch_size=self.opts.test_batch_size,
shuffle=False,
num_workers=int(self.opts.test_workers),
drop_last=True)
self.age_transformer = AgeTransformer(target_age=self.opts.target_age)
# Initialize logger
log_dir = os.path.join(opts.exp_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
self.logger = SummaryWriter(log_dir=log_dir)
# Initialize checkpoint dir
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.best_val_loss = None
if self.opts.save_interval is None:
self.opts.save_interval = self.opts.max_steps
def perform_forward_pass(self, x):
y_hat, latent = self.net.forward(x, return_latents=True)
return y_hat, latent
def __set_target_to_source(self, x, input_ages):
return [torch.cat((img, age * torch.ones((1, img.shape[1], img.shape[2])).to(self.device)))
for img, age in zip(x, input_ages)]
def train(self):
self.net.train()
while self.global_step < self.opts.max_steps:
for batch_idx, batch in enumerate(self.train_dataloader):
x, y = batch
x, y = x.to(self.device).float(), y.to(self.device).float()
self.optimizer.zero_grad()
input_ages = self.aging_loss.extract_ages(x) / 100.
# perform no aging in 33% of the time
no_aging = random.random() <= (1. / 3)
if no_aging:
x_input = self.__set_target_to_source(x=x, input_ages=input_ages)
else:
x_input = [self.age_transformer(img.cpu()).to(self.device) for img in x]
x_input = torch.stack(x_input)
target_ages = x_input[:, -1, 0, 0]
# perform forward/backward pass on real images
y_hat, latent = self.perform_forward_pass(x_input)
loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent,
target_ages=target_ages,
input_ages=input_ages,
no_aging=no_aging,
data_type="real")
loss.backward()
# perform cycle on generate images by setting the target ages to the original input ages
y_hat_clone = y_hat.clone().detach().requires_grad_(True)
input_ages_clone = input_ages.clone().detach().requires_grad_(True)
y_hat_inverse = self.__set_target_to_source(x=y_hat_clone, input_ages=input_ages_clone)
y_hat_inverse = torch.stack(y_hat_inverse)
reverse_target_ages = y_hat_inverse[:, -1, 0, 0]
y_recovered, latent_cycle = self.perform_forward_pass(y_hat_inverse)
loss, cycle_loss_dict, cycle_id_logs = self.calc_loss(x, y, y_recovered, latent_cycle,
target_ages=reverse_target_ages,
input_ages=input_ages,
no_aging=no_aging,
data_type="cycle")
loss.backward()
self.optimizer.step()
# combine the logs of both forwards
for idx, cycle_log in enumerate(cycle_id_logs):
id_logs[idx].update(cycle_log)
loss_dict.update(cycle_loss_dict)
loss_dict["loss"] = loss_dict["loss_real"] + loss_dict["loss_cycle"]
# Logging related
if self.global_step % self.opts.image_interval == 0 or \
(self.global_step < 1000 and self.global_step % 25 == 0):
self.parse_and_log_images(id_logs, x, y, y_hat, y_recovered,
title='images/train/faces')
if self.global_step % self.opts.board_interval == 0:
self.print_metrics(loss_dict, prefix='train')
self.log_metrics(loss_dict, prefix='train')
# Validation related
val_loss_dict = None
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
val_loss_dict = self.validate()
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
self.best_val_loss = val_loss_dict['loss']
self.checkpoint_me(val_loss_dict, is_best=True)
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
if val_loss_dict is not None:
self.checkpoint_me(val_loss_dict, is_best=False)
else:
self.checkpoint_me(loss_dict, is_best=False)
if self.global_step == self.opts.max_steps:
print('OMG, finished training!')
break
self.global_step += 1
def validate(self):
self.net.eval()
agg_loss_dict = []
for batch_idx, batch in enumerate(self.test_dataloader):
x, y = batch
with torch.no_grad():
x, y = x.to(self.device).float(), y.to(self.device).float()
input_ages = self.aging_loss.extract_ages(x) / 100.
# perform no aging in 33% of the time
no_aging = random.random() <= (1. / 3)
if no_aging:
x_input = self.__set_target_to_source(x=x, input_ages=input_ages)
else:
x_input = [self.age_transformer(img.cpu()).to(self.device) for img in x]
x_input = torch.stack(x_input)
target_ages = x_input[:, -1, 0, 0]
# perform forward/backward pass on real images
y_hat, latent = self.perform_forward_pass(x_input)
_, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent,
target_ages=target_ages,
input_ages=input_ages,
no_aging=no_aging,
data_type="real")
# perform cycle on generate images by setting the target ages to the original input ages
y_hat_inverse = self.__set_target_to_source(x=y_hat, input_ages=input_ages)
y_hat_inverse = torch.stack(y_hat_inverse)
reverse_target_ages = y_hat_inverse[:, -1, 0, 0]
y_recovered, latent_cycle = self.perform_forward_pass(y_hat_inverse)
loss, cycle_loss_dict, cycle_id_logs = self.calc_loss(x, y, y_recovered, latent_cycle,
target_ages=reverse_target_ages,
input_ages=input_ages,
no_aging=no_aging,
data_type="cycle")
# combine the logs of both forwards
for idx, cycle_log in enumerate(cycle_id_logs):
id_logs[idx].update(cycle_log)
cur_loss_dict.update(cycle_loss_dict)
cur_loss_dict["loss"] = cur_loss_dict["loss_real"] + cur_loss_dict["loss_cycle"]
agg_loss_dict.append(cur_loss_dict)
# Logging related
self.parse_and_log_images(id_logs, x, y, y_hat, y_recovered, title='images/test/faces',
subscript='{:04d}'.format(batch_idx))
# For first step just do sanity test on small amount of data
if self.global_step == 0 and batch_idx >= 4:
self.net.train()
return None # Do not log, inaccurate in first batch
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
self.log_metrics(loss_dict, prefix='test')
self.print_metrics(loss_dict, prefix='test')
self.net.train()
return loss_dict
def checkpoint_me(self, loss_dict, is_best):
save_name = 'best_model.pt' if is_best else f'iteration_{self.global_step}.pt'
save_dict = self.__get_save_dict()
checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
if is_best:
f.write('**Best**: Step - {}, '
'Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict))
else:
f.write(f'Step - {self.global_step}, \n{loss_dict}\n')
def configure_optimizers(self):
params = list(self.net.encoder.parameters())
if self.opts.train_decoder:
params += list(self.net.decoder.parameters())
if self.opts.optim_name == 'adam':
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
else:
optimizer = Ranger(params, lr=self.opts.learning_rate)
return optimizer
def configure_datasets(self):
if self.opts.dataset_type not in data_configs.DATASETS.keys():
Exception(f'{self.opts.dataset_type} is not a valid dataset_type')
print(f'Loading dataset for {self.opts.dataset_type}')
dataset_args = data_configs.DATASETS[self.opts.dataset_type]
transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
target_root=dataset_args['train_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_gt_train'],
opts=self.opts)
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
target_root=dataset_args['test_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_test'],
opts=self.opts)
print(f"Number of training samples: {len(train_dataset)}")
print(f"Number of test samples: {len(test_dataset)}")
return train_dataset, test_dataset
def calc_loss(self, x, y, y_hat, latent, target_ages, input_ages, no_aging, data_type="real"):
loss_dict = {}
id_logs = []
loss = 0.0
if self.opts.id_lambda > 0:
weights = None
if self.opts.use_weighted_id_loss: # compute weighted id loss only on forward pass
age_diffs = torch.abs(target_ages - input_ages)
weights = train_utils.compute_cosine_weights(x=age_diffs)
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x, label=data_type, weights=weights)
loss_dict[f'loss_id_{data_type}'] = float(loss_id)
loss_dict[f'id_improve_{data_type}'] = float(sim_improvement)
loss = loss_id * self.opts.id_lambda
if self.opts.l2_lambda > 0:
loss_l2 = F.mse_loss(y_hat, y)
loss_dict[f'loss_l2_{data_type}'] = float(loss_l2)
if data_type == "real" and not no_aging:
l2_lambda = self.opts.l2_lambda_aging
else:
l2_lambda = self.opts.l2_lambda
loss += loss_l2 * l2_lambda
if self.opts.lpips_lambda > 0:
loss_lpips = self.lpips_loss(y_hat, y)
loss_dict[f'loss_lpips_{data_type}'] = float(loss_lpips)
if data_type == "real" and not no_aging:
lpips_lambda = self.opts.lpips_lambda_aging
else:
lpips_lambda = self.opts.lpips_lambda
loss += loss_lpips * lpips_lambda
if self.opts.lpips_lambda_crop > 0:
loss_lpips_crop = self.lpips_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_lpips_crop'] = float(loss_lpips_crop)
loss += loss_lpips_crop * self.opts.lpips_lambda_crop
if self.opts.l2_lambda_crop > 0:
loss_l2_crop = F.mse_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_l2_crop'] = float(loss_l2_crop)
loss += loss_l2_crop * self.opts.l2_lambda_crop
if self.opts.w_norm_lambda > 0:
loss_w_norm = self.w_norm_loss(latent, latent_avg=self.net.latent_avg)
loss_dict[f'loss_w_norm_{data_type}'] = float(loss_w_norm)
loss += loss_w_norm * self.opts.w_norm_lambda
if self.opts.aging_lambda > 0:
aging_loss, id_logs = self.aging_loss(y_hat, y, target_ages, id_logs, label=data_type)
loss_dict[f'loss_aging_{data_type}'] = float(aging_loss)
loss += aging_loss * self.opts.aging_lambda
loss_dict[f'loss_{data_type}'] = float(loss)
if data_type == "cycle":
loss = loss * self.opts.cycle_lambda
return loss, loss_dict, id_logs
def log_metrics(self, metrics_dict, prefix):
for key, value in metrics_dict.items():
self.logger.add_scalar(f'{prefix}/{key}', value, self.global_step)
def print_metrics(self, metrics_dict, prefix):
print(f'Metrics for {prefix}, step {self.global_step}')
for key, value in metrics_dict.items():
print(f'\t{key} = ', value)
def parse_and_log_images(self, id_logs, x, y, y_hat, y_recovered, title, subscript=None, display_count=2):
im_data = []
for i in range(display_count):
cur_im_data = {
'input_face': common.tensor2im(x[i]),
'target_face': common.tensor2im(y[i]),
'output_face': common.tensor2im(y_hat[i]),
'recovered_face': common.tensor2im(y_recovered[i])
}
if id_logs is not None:
for key in id_logs[i]:
cur_im_data[key] = id_logs[i][key]
im_data.append(cur_im_data)
self.log_images(title, im_data=im_data, subscript=subscript)
def log_images(self, name, im_data, subscript=None, log_latest=False):
fig = common.vis_faces(im_data)
step = self.global_step
if log_latest:
step = 0
if subscript:
path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step))
else:
path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step))
os.makedirs(os.path.dirname(path), exist_ok=True)
fig.savefig(path)
plt.close(fig)
def __get_save_dict(self):
save_dict = {
'state_dict': self.net.state_dict(),
'opts': vars(self.opts)
}
# save the latent avg in state_dict for inference if truncation of w was used during training
if self.net.latent_avg is not None:
save_dict['latent_avg'] = self.net.latent_avg
return save_dict