|
import os |
|
import random |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
matplotlib.use('Agg') |
|
|
|
import torch |
|
from torch import nn |
|
from torch.utils.data import DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torch.nn.functional as F |
|
|
|
from utils import common, train_utils |
|
from criteria import id_loss, w_norm |
|
from configs import data_configs |
|
from datasets.images_dataset import ImagesDataset |
|
from datasets.augmentations import AgeTransformer |
|
from criteria.lpips.lpips import LPIPS |
|
from criteria.aging_loss import AgingLoss |
|
from models.psp import pSp |
|
from training.ranger import Ranger |
|
|
|
|
|
class Coach: |
|
def __init__(self, opts): |
|
self.opts = opts |
|
|
|
self.global_step = 0 |
|
|
|
self.device = 'cuda' |
|
self.opts.device = self.device |
|
|
|
|
|
self.net = pSp(self.opts).to(self.device) |
|
|
|
|
|
self.mse_loss = nn.MSELoss().to(self.device).eval() |
|
if self.opts.lpips_lambda > 0: |
|
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval() |
|
if self.opts.id_lambda > 0: |
|
self.id_loss = id_loss.IDLoss().to(self.device).eval() |
|
if self.opts.w_norm_lambda > 0: |
|
self.w_norm_loss = w_norm.WNormLoss(opts=self.opts) |
|
if self.opts.aging_lambda > 0: |
|
self.aging_loss = AgingLoss(self.opts) |
|
|
|
|
|
self.optimizer = self.configure_optimizers() |
|
|
|
|
|
self.train_dataset, self.test_dataset = self.configure_datasets() |
|
self.train_dataloader = DataLoader(self.train_dataset, |
|
batch_size=self.opts.batch_size, |
|
shuffle=True, |
|
num_workers=int(self.opts.workers), |
|
drop_last=True) |
|
self.test_dataloader = DataLoader(self.test_dataset, |
|
batch_size=self.opts.test_batch_size, |
|
shuffle=False, |
|
num_workers=int(self.opts.test_workers), |
|
drop_last=True) |
|
|
|
self.age_transformer = AgeTransformer(target_age=self.opts.target_age) |
|
|
|
|
|
log_dir = os.path.join(opts.exp_dir, 'logs') |
|
os.makedirs(log_dir, exist_ok=True) |
|
self.logger = SummaryWriter(log_dir=log_dir) |
|
|
|
|
|
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints') |
|
os.makedirs(self.checkpoint_dir, exist_ok=True) |
|
self.best_val_loss = None |
|
if self.opts.save_interval is None: |
|
self.opts.save_interval = self.opts.max_steps |
|
|
|
def perform_forward_pass(self, x): |
|
y_hat, latent = self.net.forward(x, return_latents=True) |
|
return y_hat, latent |
|
|
|
def __set_target_to_source(self, x, input_ages): |
|
return [torch.cat((img, age * torch.ones((1, img.shape[1], img.shape[2])).to(self.device))) |
|
for img, age in zip(x, input_ages)] |
|
|
|
def train(self): |
|
self.net.train() |
|
while self.global_step < self.opts.max_steps: |
|
for batch_idx, batch in enumerate(self.train_dataloader): |
|
x, y = batch |
|
x, y = x.to(self.device).float(), y.to(self.device).float() |
|
self.optimizer.zero_grad() |
|
|
|
input_ages = self.aging_loss.extract_ages(x) / 100. |
|
|
|
|
|
no_aging = random.random() <= (1. / 3) |
|
if no_aging: |
|
x_input = self.__set_target_to_source(x=x, input_ages=input_ages) |
|
else: |
|
x_input = [self.age_transformer(img.cpu()).to(self.device) for img in x] |
|
|
|
x_input = torch.stack(x_input) |
|
target_ages = x_input[:, -1, 0, 0] |
|
|
|
|
|
y_hat, latent = self.perform_forward_pass(x_input) |
|
loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent, |
|
target_ages=target_ages, |
|
input_ages=input_ages, |
|
no_aging=no_aging, |
|
data_type="real") |
|
loss.backward() |
|
|
|
|
|
y_hat_clone = y_hat.clone().detach().requires_grad_(True) |
|
input_ages_clone = input_ages.clone().detach().requires_grad_(True) |
|
y_hat_inverse = self.__set_target_to_source(x=y_hat_clone, input_ages=input_ages_clone) |
|
y_hat_inverse = torch.stack(y_hat_inverse) |
|
reverse_target_ages = y_hat_inverse[:, -1, 0, 0] |
|
y_recovered, latent_cycle = self.perform_forward_pass(y_hat_inverse) |
|
loss, cycle_loss_dict, cycle_id_logs = self.calc_loss(x, y, y_recovered, latent_cycle, |
|
target_ages=reverse_target_ages, |
|
input_ages=input_ages, |
|
no_aging=no_aging, |
|
data_type="cycle") |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
|
|
for idx, cycle_log in enumerate(cycle_id_logs): |
|
id_logs[idx].update(cycle_log) |
|
loss_dict.update(cycle_loss_dict) |
|
loss_dict["loss"] = loss_dict["loss_real"] + loss_dict["loss_cycle"] |
|
|
|
|
|
if self.global_step % self.opts.image_interval == 0 or \ |
|
(self.global_step < 1000 and self.global_step % 25 == 0): |
|
self.parse_and_log_images(id_logs, x, y, y_hat, y_recovered, |
|
title='images/train/faces') |
|
|
|
if self.global_step % self.opts.board_interval == 0: |
|
self.print_metrics(loss_dict, prefix='train') |
|
self.log_metrics(loss_dict, prefix='train') |
|
|
|
|
|
val_loss_dict = None |
|
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps: |
|
val_loss_dict = self.validate() |
|
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss): |
|
self.best_val_loss = val_loss_dict['loss'] |
|
self.checkpoint_me(val_loss_dict, is_best=True) |
|
|
|
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps: |
|
if val_loss_dict is not None: |
|
self.checkpoint_me(val_loss_dict, is_best=False) |
|
else: |
|
self.checkpoint_me(loss_dict, is_best=False) |
|
|
|
if self.global_step == self.opts.max_steps: |
|
print('OMG, finished training!') |
|
break |
|
|
|
self.global_step += 1 |
|
|
|
def validate(self): |
|
self.net.eval() |
|
agg_loss_dict = [] |
|
for batch_idx, batch in enumerate(self.test_dataloader): |
|
x, y = batch |
|
with torch.no_grad(): |
|
x, y = x.to(self.device).float(), y.to(self.device).float() |
|
|
|
input_ages = self.aging_loss.extract_ages(x) / 100. |
|
|
|
|
|
no_aging = random.random() <= (1. / 3) |
|
if no_aging: |
|
x_input = self.__set_target_to_source(x=x, input_ages=input_ages) |
|
else: |
|
x_input = [self.age_transformer(img.cpu()).to(self.device) for img in x] |
|
|
|
x_input = torch.stack(x_input) |
|
target_ages = x_input[:, -1, 0, 0] |
|
|
|
|
|
y_hat, latent = self.perform_forward_pass(x_input) |
|
_, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent, |
|
target_ages=target_ages, |
|
input_ages=input_ages, |
|
no_aging=no_aging, |
|
data_type="real") |
|
|
|
|
|
y_hat_inverse = self.__set_target_to_source(x=y_hat, input_ages=input_ages) |
|
y_hat_inverse = torch.stack(y_hat_inverse) |
|
reverse_target_ages = y_hat_inverse[:, -1, 0, 0] |
|
y_recovered, latent_cycle = self.perform_forward_pass(y_hat_inverse) |
|
loss, cycle_loss_dict, cycle_id_logs = self.calc_loss(x, y, y_recovered, latent_cycle, |
|
target_ages=reverse_target_ages, |
|
input_ages=input_ages, |
|
no_aging=no_aging, |
|
data_type="cycle") |
|
|
|
|
|
for idx, cycle_log in enumerate(cycle_id_logs): |
|
id_logs[idx].update(cycle_log) |
|
cur_loss_dict.update(cycle_loss_dict) |
|
cur_loss_dict["loss"] = cur_loss_dict["loss_real"] + cur_loss_dict["loss_cycle"] |
|
|
|
agg_loss_dict.append(cur_loss_dict) |
|
|
|
|
|
self.parse_and_log_images(id_logs, x, y, y_hat, y_recovered, title='images/test/faces', |
|
subscript='{:04d}'.format(batch_idx)) |
|
|
|
|
|
if self.global_step == 0 and batch_idx >= 4: |
|
self.net.train() |
|
return None |
|
|
|
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict) |
|
self.log_metrics(loss_dict, prefix='test') |
|
self.print_metrics(loss_dict, prefix='test') |
|
|
|
self.net.train() |
|
return loss_dict |
|
|
|
def checkpoint_me(self, loss_dict, is_best): |
|
save_name = 'best_model.pt' if is_best else f'iteration_{self.global_step}.pt' |
|
save_dict = self.__get_save_dict() |
|
checkpoint_path = os.path.join(self.checkpoint_dir, save_name) |
|
torch.save(save_dict, checkpoint_path) |
|
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f: |
|
if is_best: |
|
f.write('**Best**: Step - {}, ' |
|
'Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict)) |
|
else: |
|
f.write(f'Step - {self.global_step}, \n{loss_dict}\n') |
|
|
|
def configure_optimizers(self): |
|
params = list(self.net.encoder.parameters()) |
|
if self.opts.train_decoder: |
|
params += list(self.net.decoder.parameters()) |
|
if self.opts.optim_name == 'adam': |
|
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate) |
|
else: |
|
optimizer = Ranger(params, lr=self.opts.learning_rate) |
|
return optimizer |
|
|
|
def configure_datasets(self): |
|
if self.opts.dataset_type not in data_configs.DATASETS.keys(): |
|
Exception(f'{self.opts.dataset_type} is not a valid dataset_type') |
|
print(f'Loading dataset for {self.opts.dataset_type}') |
|
dataset_args = data_configs.DATASETS[self.opts.dataset_type] |
|
transforms_dict = dataset_args['transforms'](self.opts).get_transforms() |
|
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'], |
|
target_root=dataset_args['train_target_root'], |
|
source_transform=transforms_dict['transform_source'], |
|
target_transform=transforms_dict['transform_gt_train'], |
|
opts=self.opts) |
|
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'], |
|
target_root=dataset_args['test_target_root'], |
|
source_transform=transforms_dict['transform_source'], |
|
target_transform=transforms_dict['transform_test'], |
|
opts=self.opts) |
|
print(f"Number of training samples: {len(train_dataset)}") |
|
print(f"Number of test samples: {len(test_dataset)}") |
|
return train_dataset, test_dataset |
|
|
|
def calc_loss(self, x, y, y_hat, latent, target_ages, input_ages, no_aging, data_type="real"): |
|
loss_dict = {} |
|
id_logs = [] |
|
loss = 0.0 |
|
if self.opts.id_lambda > 0: |
|
weights = None |
|
if self.opts.use_weighted_id_loss: |
|
age_diffs = torch.abs(target_ages - input_ages) |
|
weights = train_utils.compute_cosine_weights(x=age_diffs) |
|
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x, label=data_type, weights=weights) |
|
loss_dict[f'loss_id_{data_type}'] = float(loss_id) |
|
loss_dict[f'id_improve_{data_type}'] = float(sim_improvement) |
|
loss = loss_id * self.opts.id_lambda |
|
if self.opts.l2_lambda > 0: |
|
loss_l2 = F.mse_loss(y_hat, y) |
|
loss_dict[f'loss_l2_{data_type}'] = float(loss_l2) |
|
if data_type == "real" and not no_aging: |
|
l2_lambda = self.opts.l2_lambda_aging |
|
else: |
|
l2_lambda = self.opts.l2_lambda |
|
loss += loss_l2 * l2_lambda |
|
if self.opts.lpips_lambda > 0: |
|
loss_lpips = self.lpips_loss(y_hat, y) |
|
loss_dict[f'loss_lpips_{data_type}'] = float(loss_lpips) |
|
if data_type == "real" and not no_aging: |
|
lpips_lambda = self.opts.lpips_lambda_aging |
|
else: |
|
lpips_lambda = self.opts.lpips_lambda |
|
loss += loss_lpips * lpips_lambda |
|
if self.opts.lpips_lambda_crop > 0: |
|
loss_lpips_crop = self.lpips_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220]) |
|
loss_dict['loss_lpips_crop'] = float(loss_lpips_crop) |
|
loss += loss_lpips_crop * self.opts.lpips_lambda_crop |
|
if self.opts.l2_lambda_crop > 0: |
|
loss_l2_crop = F.mse_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220]) |
|
loss_dict['loss_l2_crop'] = float(loss_l2_crop) |
|
loss += loss_l2_crop * self.opts.l2_lambda_crop |
|
if self.opts.w_norm_lambda > 0: |
|
loss_w_norm = self.w_norm_loss(latent, latent_avg=self.net.latent_avg) |
|
loss_dict[f'loss_w_norm_{data_type}'] = float(loss_w_norm) |
|
loss += loss_w_norm * self.opts.w_norm_lambda |
|
if self.opts.aging_lambda > 0: |
|
aging_loss, id_logs = self.aging_loss(y_hat, y, target_ages, id_logs, label=data_type) |
|
loss_dict[f'loss_aging_{data_type}'] = float(aging_loss) |
|
loss += aging_loss * self.opts.aging_lambda |
|
loss_dict[f'loss_{data_type}'] = float(loss) |
|
if data_type == "cycle": |
|
loss = loss * self.opts.cycle_lambda |
|
return loss, loss_dict, id_logs |
|
|
|
def log_metrics(self, metrics_dict, prefix): |
|
for key, value in metrics_dict.items(): |
|
self.logger.add_scalar(f'{prefix}/{key}', value, self.global_step) |
|
|
|
def print_metrics(self, metrics_dict, prefix): |
|
print(f'Metrics for {prefix}, step {self.global_step}') |
|
for key, value in metrics_dict.items(): |
|
print(f'\t{key} = ', value) |
|
|
|
def parse_and_log_images(self, id_logs, x, y, y_hat, y_recovered, title, subscript=None, display_count=2): |
|
im_data = [] |
|
for i in range(display_count): |
|
cur_im_data = { |
|
'input_face': common.tensor2im(x[i]), |
|
'target_face': common.tensor2im(y[i]), |
|
'output_face': common.tensor2im(y_hat[i]), |
|
'recovered_face': common.tensor2im(y_recovered[i]) |
|
} |
|
if id_logs is not None: |
|
for key in id_logs[i]: |
|
cur_im_data[key] = id_logs[i][key] |
|
im_data.append(cur_im_data) |
|
self.log_images(title, im_data=im_data, subscript=subscript) |
|
|
|
def log_images(self, name, im_data, subscript=None, log_latest=False): |
|
fig = common.vis_faces(im_data) |
|
step = self.global_step |
|
if log_latest: |
|
step = 0 |
|
if subscript: |
|
path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step)) |
|
else: |
|
path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step)) |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
fig.savefig(path) |
|
plt.close(fig) |
|
|
|
def __get_save_dict(self): |
|
save_dict = { |
|
'state_dict': self.net.state_dict(), |
|
'opts': vars(self.opts) |
|
} |
|
|
|
if self.net.latent_avg is not None: |
|
save_dict['latent_avg'] = self.net.latent_avg |
|
return save_dict |
|
|