AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
55.7 kB
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNn_TRAINER_H_
#define DLIB_DNn_TRAINER_H_
#include "trainer_abstract.h"
#include "core.h"
#include "solvers.h"
#include "../statistics.h"
#include <chrono>
#include <fstream>
#include <sstream>
#include "../serialize.h"
#include "../pipe.h"
#include "../threads.h"
#include "../cuda/cuda_dlib.h"
#include "../statistics/running_gradient.h"
#include <atomic>
#include <cstdio>
#include <set>
#include <future>
#include <exception>
#include <mutex>
#include "../dir_nav.h"
#include "../md5.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename training_label_type>
struct dnn_job_t
{
dnn_job_t() = default;
dnn_job_t(const dnn_job_t&) = delete;
dnn_job_t& operator=(const dnn_job_t&) = delete;
std::vector<std::vector<training_label_type>> labels;
std::vector<resizable_tensor> t;
std::vector<int> have_data; // have_data[i] is true if there is data in labels[i] and t[i].
bool test_only = false;
};
template <typename training_label_type>
void swap(dnn_job_t<training_label_type>& a, dnn_job_t<training_label_type>& b)
{
a.labels.swap(b.labels);
a.t.swap(b.t);
a.have_data.swap(b.have_data);
std::swap(a.test_only,b.test_only);
}
}
enum class force_flush_to_disk {
no = 0,
yes = 1
};
template <
typename net_type,
typename solver_type = sgd
>
class dnn_trainer : private threaded_object
{
public:
static_assert(is_loss_layer_type<net_type>::value,
"The last layer in a network must be a loss layer.");
typedef typename net_type::training_label_type training_label_type;
typedef typename net_type::input_type input_type;
const static size_t num_computational_layers = net_type::num_computational_layers;
const static size_t num_layers = net_type::num_layers;
using threads = std::vector<std::shared_ptr<thread_pool>>;
private:
typedef impl::dnn_job_t<training_label_type> job_t;
public:
dnn_trainer() = delete;
dnn_trainer(const dnn_trainer&) = delete;
dnn_trainer& operator=(const dnn_trainer&) = delete;
explicit dnn_trainer(net_type& net_) : job_pipe(0), net(net_)
{
solver_type default_solver;
devices.push_back(std::make_shared<device_data>(dlib::cuda::get_device(), net, default_solver));
init();
}
dnn_trainer(
net_type& net_,
const solver_type& solver_
) : job_pipe(0), net(net_)
{
devices.push_back(std::make_shared<device_data>(dlib::cuda::get_device(), net, solver_));
init();
}
dnn_trainer(
net_type& net_,
const solver_type& solver_,
const std::vector<int>& cuda_extra_devices,
std::shared_ptr<threads> thread_pools_ = std::shared_ptr<threads>()
) : job_pipe(0), thread_pools(thread_pools_), net(net_)
{
devices.push_back(std::make_shared<device_data>(dlib::cuda::get_device(), net, solver_));
const int total_devices = dlib::cuda::get_num_devices();
// Make device contexts for the extra device ids but be careful to avoid any
// duplicate ids.
std::set<int> temp(cuda_extra_devices.begin(), cuda_extra_devices.end());
temp.erase(devices[0]->device_id);
for (auto id : temp)
{
DLIB_CASSERT(0 <= id && id < total_devices, "Invalid CUDA device id given to dnn_trainer.");
// Switch to this device so that any tensor objects that get allocated when
// we create the device context happen on this device.
dlib::cuda::set_device(id);
devices.push_back(std::make_shared<device_data>(id, net, solver_, clone_net()));
}
// Set the current device back to what it was before this constructor was
// called.
dlib::cuda::set_device(devices[0]->device_id);
init();
}
~dnn_trainer(
)
{
job_pipe.disable();
stop();
wait();
}
net_type& get_net (
force_flush_to_disk force_flush = force_flush_to_disk::yes
)
{
wait_for_thread_to_pause();
sync_to_disk(force_flush == force_flush_to_disk::yes);
propagate_exception();
return net;
}
unsigned long get_mini_batch_size (
) const { return mini_batch_size; }
void set_mini_batch_size (
unsigned long batch_size
)
{
DLIB_CASSERT(batch_size > 0);
mini_batch_size = batch_size;
}
unsigned long get_max_num_epochs (
) const { return max_num_epochs; }
void set_max_num_epochs (
unsigned long num
)
{
DLIB_CASSERT(num > 0);
max_num_epochs = num;
}
void be_verbose (
)
{
verbose = true;
}
void be_quiet (
)
{
verbose = false;
}
const std::vector<solver_type>& get_solvers (
) const
{
wait_for_thread_to_pause();
propagate_exception();
return devices[0]->solvers;
}
void train_one_step (
const std::vector<input_type>& data,
const std::vector<training_label_type>& labels
)
{
DLIB_CASSERT(data.size() == labels.size());
train_one_step(data.begin(), data.end(), labels.begin());
}
template <
typename data_iterator,
typename label_iterator
>
void train_one_step (
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(false, dbegin, dend, lbegin);
++train_one_step_calls;
}
void train_one_step (
const std::vector<input_type>& data
)
{
train_one_step(data.begin(), data.end());
}
template <
typename data_iterator
>
void train_one_step (
data_iterator dbegin,
data_iterator dend
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(false, dbegin, dend);
++train_one_step_calls;
}
void test_one_step (
const std::vector<input_type>& data,
const std::vector<training_label_type>& labels
)
{
DLIB_CASSERT(data.size() == labels.size());
test_one_step(data.begin(), data.end(), labels.begin());
}
template <
typename data_iterator,
typename label_iterator
>
void test_one_step (
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(true, dbegin, dend, lbegin);
++test_one_step_calls;
}
void test_one_step (
const std::vector<input_type>& data
)
{
test_one_step(data.begin(), data.end());
}
template <
typename data_iterator
>
void test_one_step (
data_iterator dbegin,
data_iterator dend
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(true, dbegin, dend);
++test_one_step_calls;
}
void train (
const std::vector<input_type>& data,
const std::vector<training_label_type>& labels
)
{
DLIB_CASSERT(data.size() == labels.size() && data.size() > 0);
// The reason these two loops don't initialize their counter variables but
// instead use class members is so we can include the state of the loops in the
// stuff written by sync_to_disk()
for (;
epoch_iteration < max_num_epochs && learning_rate >= min_learning_rate;
++epoch_iteration)
{
using namespace std::chrono;
last_time = system_clock::now();
clear_average_loss();
for (; epoch_pos < data.size() && learning_rate >= min_learning_rate; epoch_pos += mini_batch_size)
{
if (verbose)
{
auto now_time = system_clock::now();
if (now_time-last_time > seconds(20))
{
last_time = now_time;
auto iter = epoch_iteration + epoch_pos/(double)data.size();
std::cout << "epoch: " << rpad(cast_to_string(iter),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
sync_to_disk();
send_job(false, data.begin()+epoch_pos,
data.begin()+std::min(epoch_pos+mini_batch_size,data.size()),
labels.begin()+epoch_pos);
}
epoch_pos = 0;
if (verbose)
{
// Capitalize the E in Epoch so it's easy to grep out the lines that
// are for full epoch status statements.
std::cout << "Epoch: " << rpad(cast_to_string(epoch_iteration+1),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
wait_for_thread_to_pause();
// if we modified the network at all then be sure to sync the final result.
sync_to_disk(true);
}
void train (
const std::vector<input_type>& data
)
{
DLIB_CASSERT(data.size() > 0);
const bool has_unsupervised_loss = std::is_same<no_label_type, training_label_type>::value;
static_assert(has_unsupervised_loss,
"You can only call this version of train() when using an unsupervised loss.");
// The reason these two loops don't initialize their counter variables but
// instead use class members is so we can include the state of the loops in the
// stuff written by sync_to_disk()
for (;
epoch_iteration < max_num_epochs && learning_rate >= min_learning_rate;
++epoch_iteration)
{
using namespace std::chrono;
last_time = system_clock::now();
clear_average_loss();
for (; epoch_pos < data.size() && learning_rate >= min_learning_rate; epoch_pos += mini_batch_size)
{
if (verbose)
{
auto now_time = system_clock::now();
if (now_time-last_time > seconds(20))
{
last_time = now_time;
auto iter = epoch_iteration + epoch_pos/(double)data.size();
std::cout << "epoch: " << rpad(cast_to_string(iter),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
sync_to_disk();
send_job(false, data.begin()+epoch_pos,
data.begin()+std::min(epoch_pos+mini_batch_size,data.size()));
}
epoch_pos = 0;
if (verbose)
{
// Capitalize the E in Epoch so it's easy to grep out the lines that
// are for full epoch status statements.
std::cout << "Epoch: " << rpad(cast_to_string(epoch_iteration+1),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
wait_for_thread_to_pause();
// if we modified the network at all then be sure to sync the final result.
sync_to_disk(true);
}
void set_synchronization_file (
const std::string& filename,
std::chrono::seconds time_between_syncs_ = std::chrono::minutes(15)
)
{
last_sync_time = std::chrono::system_clock::now();
sync_filename = filename;
time_between_syncs = time_between_syncs_;
// check if the sync file already exists, if it does we should load it.
std::ifstream fin(newest_syncfile(), std::ios::binary);
if (fin)
deserialize(*this, fin);
}
const std::string& get_synchronization_file (
)
{
return sync_filename;
}
double get_average_loss (
) const
{
wait_for_thread_to_pause();
return rs.mean();
}
double get_average_test_loss (
) const
{
wait_for_thread_to_pause();
return rs_test.mean();
}
void clear_average_loss (
)
{
wait_for_thread_to_pause();
rs.clear();
}
void set_learning_rate (
double lr
)
{
DLIB_CASSERT(lr > 0);
wait_for_thread_to_pause();
if (learning_rate != lr)
{
steps_without_progress = 0;
test_steps_without_progress = 0;
previous_loss_values.clear();
test_previous_loss_values.clear();
previous_loss_values_to_keep_until_disk_sync.clear();
}
learning_rate = lr;
lr_schedule.set_size(0);
}
double get_learning_rate(
) const
{
return learning_rate;
}
void set_min_learning_rate (
double lr
)
{
DLIB_CASSERT(lr > 0);
wait_for_thread_to_pause();
lr_schedule.set_size(0);
min_learning_rate = lr;
}
double get_min_learning_rate (
) const
{
return min_learning_rate;
}
template <typename EXP>
void set_learning_rate_schedule (
const matrix_exp<EXP>& schedule
)
{
DLIB_CASSERT(schedule.size() > 0);
DLIB_CASSERT(min(schedule) > 0);
set_learning_rate(schedule(0,0));
set_min_learning_rate(min(schedule));
set_learning_rate_shrink_factor(1);
lr_schedule = matrix_cast<double>(reshape_to_column_vector(schedule));
lr_schedule_pos = 0;
}
const matrix<double,0,1>& get_learning_rate_schedule (
) const
{
return lr_schedule;
}
void set_iterations_without_progress_threshold (
unsigned long thresh
)
{
wait_for_thread_to_pause();
lr_schedule.set_size(0);
iter_without_progress_thresh = thresh;
}
unsigned long get_iterations_without_progress_threshold (
) const
{
return iter_without_progress_thresh;
}
unsigned long get_steps_without_progress (
) const
{
return steps_without_progress;
}
void set_test_iterations_without_progress_threshold (
unsigned long thresh
)
{
wait_for_thread_to_pause();
lr_schedule.set_size(0);
test_iter_without_progress_thresh = thresh;
}
unsigned long get_test_iterations_without_progress_threshold (
) const
{
return test_iter_without_progress_thresh;
}
unsigned long get_test_steps_without_progress (
) const
{
return test_steps_without_progress;
}
void set_learning_rate_shrink_factor (
double shrink
)
{
DLIB_CASSERT(0 < shrink && shrink <= 1);
wait_for_thread_to_pause();
lr_schedule.set_size(0);
learning_rate_shrink = shrink;
steps_without_progress = 0;
test_steps_without_progress = 0;
}
double get_learning_rate_shrink_factor (
) const
{
return learning_rate_shrink;
}
unsigned long long get_train_one_step_calls (
) const
{
return train_one_step_calls;
}
unsigned long long get_test_one_step_calls (
) const
{
return test_one_step_calls;
}
private:
void record_test_loss(double loss)
{
test_previous_loss_values.push_back(loss);
if (is_finite(loss))
rs_test.add(loss);
// discard really old loss values.
while (test_previous_loss_values.size() > test_iter_without_progress_thresh)
test_previous_loss_values.pop_front();
}
void record_loss(double loss)
{
// This kind of budgeting causes our gradient checking to use a fixed amount of
// computational resources, regardless of the size of iter_without_progress_thresh.
gradient_check_budget += 200;
rs.add(loss);
previous_loss_values.push_back(loss);
// discard really old loss values.
while (previous_loss_values.size() > iter_without_progress_thresh)
previous_loss_values.pop_front();
// separately keep another loss history until disk sync
// (but only if disk sync is enabled)
if (!sync_filename.empty())
previous_loss_values_to_keep_until_disk_sync.push_back(loss);
}
template <typename T>
double compute_parameter_gradients(size_t device, job_t& next_job, const T&)
{
if (next_job.have_data[device])
{
auto&& dev = *devices[device];
dlib::cuda::set_device(dev.device_id);
if (next_job.test_only)
return dev.net.compute_loss(next_job.t[device], next_job.labels[device].begin());
else
return dev.net.compute_parameter_gradients(next_job.t[device], next_job.labels[device].begin());
}
else
{
return 0;
}
}
double compute_parameter_gradients(size_t device, job_t& next_job, const no_label_type&)
{
if (next_job.have_data[device])
{
auto&& dev = *devices[device];
dlib::cuda::set_device(dev.device_id);
no_label_type pick_which_run_update;
if (next_job.test_only)
return dev.net.compute_loss(next_job.t[device]);
else
return dev.net.compute_parameter_gradients(next_job.t[device]);
}
else
{
return 0;
}
}
void update_parameters(size_t device)
{
auto&& dev = *devices[device];
dlib::cuda::set_device(dev.device_id);
dev.net.update_parameters(make_sstack(dev.solvers), learning_rate);
}
void thread() try
{
training_label_type pick_which_run_update;
job_t next_job;
std::vector<dlib::future<double>> losses(devices.size());
std::vector<tt::multi_device_tensor_averager> averagers;
// An array of all the parameter tensors in the first network. We will
// periodically copy these tensors to all the other devices to make sure the
// different GPUs don't go out of sync.
std::vector<tensor*> reference_params;
visit_layer_parameters(devices[0]->net, [&](tensor& t) { reference_params.push_back(&t); });
// If no external thread pools vector was passed, then create one that will
// be automatically destructed as soon as the dnn_trainer object goes out of
// scope.
if (!thread_pools)
thread_pools = std::make_shared<threads>();
auto& tp = *thread_pools;
// We make separate thread pools with just one thread in them because we want
// to make sure each device is always executed on the same thread. We care
// about this because there are thread_local context variables for some cuda
// components and they get allocated for each combination of thread and device.
// So if we make sure the same device always uses the same thread this will
// reduce the number of contexts we allocate from num_devices*num_devices to
// just num_devices.
while (tp.size() < devices.size())
tp.push_back(std::make_shared<thread_pool>(1));
main_iteration_counter = 0;
while(job_pipe.dequeue(next_job))
{
if (next_job.test_only)
{
// compute the testing loss
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->add_task_by_value([&,i](double& loss){ loss = compute_parameter_gradients(i, next_job, pick_which_run_update); }, losses[i]);
// aggregate loss values from all the network computations.
double theloss = 0;
for (auto&& loss : losses)
theloss += loss.get();
record_test_loss(theloss/losses.size());
// Check if we should shrink the learning rate based on how the test
// error has been doing lately.
if (learning_rate_shrink != 1)
{
test_steps_without_progress = count_steps_without_decrease(test_previous_loss_values);
if (test_steps_without_progress >= test_iter_without_progress_thresh)
{
test_steps_without_progress = count_steps_without_decrease_robust(test_previous_loss_values);
if (test_steps_without_progress >= test_iter_without_progress_thresh)
{
// optimization has flattened out, so drop the learning rate.
learning_rate = learning_rate_shrink*learning_rate;
test_steps_without_progress = 0;
// Empty out some of the previous loss values so that test_steps_without_progress
// will decrease below test_iter_without_progress_thresh.
drop_some_test_previous_loss_values();
}
}
}
continue;
}
updated_net_since_last_sync = true;
++main_iteration_counter;
// Call compute_parameter_gradients() and update_parameters() but pick the
// right version for unsupervised or supervised training based on the type
// of training_label_type.
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->add_task_by_value([&,i](double& loss){ loss = compute_parameter_gradients(i, next_job, pick_which_run_update); }, losses[i]);
// aggregate loss values from all the network computations.
double theloss = 0;
for (auto&& loss : losses)
theloss += loss.get();
record_loss(theloss/losses.size());
// Now, if there is more than one active device we need to synchronize the
// gradient updates between devices. So we do that now.
if (devices.size() > 1)
{
// if this is the first iteration then we need to setup the averagers.
// We can't do this outside the loop because the tensors that get
// averaged need to be allocated to their devices before we call set()
// so that the averagers can determine how best to average them.
if (averagers.size() == 0 || sync_file_reloaded)
{
averagers = std::vector<tt::multi_device_tensor_averager>(net_type::num_computational_layers);
// setup the averagers to point to the tensors in the networks.
std::vector<std::vector<tensor*>> all_tensors(devices.size());
for (size_t i = 0; i < all_tensors.size(); ++i)
{
all_tensors[i].resize(net_type::num_computational_layers);
visit_layer_parameter_gradients(devices[i]->net, [&](size_t j, tensor& t){
all_tensors[i][j] = &t;
});
}
// Now set each averager to average the tensors at the same layer in each
// network.
for (size_t i = 0; i < net_type::num_computational_layers; ++i)
{
std::vector<tensor*> temp(all_tensors.size());
for (size_t j = 0; j < all_tensors.size(); ++j)
{
temp[j] = all_tensors[j][i];
DLIB_CASSERT(temp[0]->size() == temp[j]->size(),
"Make sure you don't modify the network structure "
"or number of parameters after constructing the trainer.");
}
// ignore layers that don't have parameters
if (temp[0]->size() != 0)
averagers[i].set(temp);
}
sync_file_reloaded = false;
}
for (auto&& d : devices)
cuda::device_synchronize(d->device_id);
for (auto&& avg : averagers)
avg.average();
}
// Now apply all the updates to each device.
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->add_task_by_value([&,i](){ if (next_job.have_data[i]) update_parameters(i); });
// and wait for the updates to all happen.
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->wait_for_all_tasks();
// Every now and then force all the parameters to be the same just to make
// sure they aren't drifting apart due to any non-deterministic behavior on
// the GPU. It's also important to do this on the first iteration because
// the different networks may be initialized differently when tensor data
// is first passed through them. So this code block deals with these
// issues.
if (devices.size() > 1 && main_iteration_counter%2000 == 1)
{
for (size_t i = 1; i < devices.size(); ++i)
{
visit_layer_parameters(devices[i]->net, [&](size_t j, tensor& t)
{
memcpy(t, *reference_params[j]);
});
}
}
// If we have been running for a while then check if the loss is still
// dropping. If it isn't then we will reduce the learning rate. Note that we
// have a "budget" that prevents us from calling
// count_steps_without_decrease() every iteration. We do this because
// it can be expensive to compute when previous_loss_values is large.
if (gradient_check_budget > iter_without_progress_thresh && learning_rate_shrink != 1)
{
gradient_check_budget = 0;
steps_without_progress = count_steps_without_decrease(previous_loss_values);
if (steps_without_progress >= iter_without_progress_thresh)
{
// Double check that we aren't seeing decrease. This second check
// discards the top 10% largest values and checks again. We do
// this because sometimes a mini-batch might be bad and cause the
// loss to suddenly jump up, making count_steps_without_decrease()
// return a large number. But if we discard the top 10% of the
// values in previous_loss_values then we are robust to that kind
// of noise. Another way of looking at it, if the reason
// count_steps_without_decrease() returns a large value is only
// because the most recent loss values have suddenly been large,
// then we shouldn't stop or lower the learning rate. We should
// keep going until whatever disturbance we hit is damped down.
steps_without_progress = count_steps_without_decrease_robust(previous_loss_values);
if (steps_without_progress >= iter_without_progress_thresh)
{
// optimization has flattened out, so drop the learning rate.
learning_rate = learning_rate_shrink*learning_rate;
steps_without_progress = 0;
// Empty out some of the previous loss values so that steps_without_progress
// will decrease below iter_without_progress_thresh.
drop_some_previous_loss_values();
}
}
}
else if (lr_schedule.size() != 0) // or use the learning rate schedule if we have one.
{
if (lr_schedule_pos < lr_schedule.size())
learning_rate = lr_schedule(lr_schedule_pos++);
else
learning_rate = lr_schedule(lr_schedule.size()-1)*0.99;
}
}
}
catch(...)
{
// If an exception happens then permanently disable the trainer object.
job_pipe.disable();
std::lock_guard<std::mutex> lock(eptr_mutex);
eptr = std::current_exception();
}
void wait_for_thread_to_pause() const
{
job_pipe.wait_for_num_blocked_dequeues(1);
}
const static long string_pad = 11;
const static long epoch_string_pad = 4;
const static long lr_string_pad = 4;
void init()
{
max_num_epochs = 10000;
mini_batch_size = 128;
verbose = false;
learning_rate = 1e-2;
min_learning_rate = 1e-5;
iter_without_progress_thresh = 2000;
steps_without_progress = 0;
test_iter_without_progress_thresh = 500;
test_steps_without_progress = 0;
learning_rate_shrink = 0.1;
epoch_iteration = 0;
epoch_pos = 0;
train_one_step_calls = 0;
test_one_step_calls = 0;
gradient_check_budget = 0;
lr_schedule_pos = 0;
main_iteration_counter = 0;
main_iteration_counter_at_last_disk_sync = 0;
prob_loss_increasing_thresh_default_value = 0.99;
prob_loss_increasing_thresh_max_value = 0.99999;
prob_loss_increasing_thresh = prob_loss_increasing_thresh_default_value;
updated_net_since_last_sync = false;
sync_file_reloaded = false;
previous_loss_values_dump_amount = 400;
test_previous_loss_values_dump_amount = 100;
rs_test = running_stats_decayed<double>(200);
start();
}
// serialize and deserialize are private because we hold net by reference so
// allowing someone to serialize this training object is weird and will likely
// result in user errors. However, we use these functions as part of the automatic
// sync code in this object.
friend void serialize(const dnn_trainer& item, std::ostream& out)
{
item.wait_for_thread_to_pause();
int version = 13;
serialize(version, out);
size_t nl = dnn_trainer::num_layers;
serialize(nl, out);
serialize(item.rs, out);
serialize(item.rs_test, out);
serialize(item.previous_loss_values, out);
serialize(item.max_num_epochs, out);
serialize(item.mini_batch_size, out);
serialize(item.verbose, out);
serialize(item.net, out);
serialize(item.devices[0]->solvers, out);
serialize(item.learning_rate.load(), out);
serialize(item.min_learning_rate, out);
serialize(item.iter_without_progress_thresh.load(), out);
serialize(item.steps_without_progress.load(), out);
serialize(item.learning_rate_shrink.load(), out);
serialize(item.epoch_iteration, out);
serialize(item.epoch_pos, out);
serialize(item.train_one_step_calls, out);
serialize(item.test_one_step_calls, out);
serialize(item.lr_schedule, out);
serialize(item.lr_schedule_pos, out);
serialize(item.test_iter_without_progress_thresh.load(), out);
serialize(item.test_steps_without_progress.load(), out);
serialize(item.test_previous_loss_values, out);
serialize(item.previous_loss_values_dump_amount, out);
serialize(item.test_previous_loss_values_dump_amount, out);
serialize(item.previous_loss_values_to_keep_until_disk_sync, out);
}
friend void deserialize(dnn_trainer& item, std::istream& in)
{
item.wait_for_thread_to_pause();
int version = 0;
deserialize(version, in);
if (version != 13)
throw serialization_error("Unexpected version found while deserializing dlib::dnn_trainer.");
size_t num_layers = 0;
deserialize(num_layers, in);
if (num_layers != dnn_trainer::num_layers)
{
std::ostringstream sout;
sout << "Error deserializing dlib::dnn_trainer. The saved sync file is for a network with " << std::endl;
sout << "a different number of layers. We expected the number of layers to be " << dnn_trainer::num_layers << " but" << std::endl;
sout << "instead the file contains " << num_layers << " layers." << std::endl;
throw serialization_error(sout.str());
}
double dtemp; long ltemp;
deserialize(item.rs, in);
deserialize(item.rs_test, in);
deserialize(item.previous_loss_values, in);
deserialize(item.max_num_epochs, in);
deserialize(item.mini_batch_size, in);
deserialize(item.verbose, in);
deserialize(item.net, in);
deserialize(item.devices[0]->solvers, in);
deserialize(dtemp, in); item.learning_rate = dtemp;
deserialize(item.min_learning_rate, in);
deserialize(ltemp, in); item.iter_without_progress_thresh = ltemp;
deserialize(ltemp, in); item.steps_without_progress = ltemp;
deserialize(dtemp, in); item.learning_rate_shrink = dtemp;
deserialize(item.epoch_iteration, in);
deserialize(item.epoch_pos, in);
deserialize(item.train_one_step_calls, in);
deserialize(item.test_one_step_calls, in);
deserialize(item.lr_schedule, in);
deserialize(item.lr_schedule_pos, in);
deserialize(ltemp, in); item.test_iter_without_progress_thresh = ltemp;
deserialize(ltemp, in); item.test_steps_without_progress = ltemp;
deserialize(item.test_previous_loss_values, in);
deserialize(item.previous_loss_values_dump_amount, in);
deserialize(item.test_previous_loss_values_dump_amount, in);
deserialize(item.previous_loss_values_to_keep_until_disk_sync, in);
if (item.devices.size() > 1)
{
const auto prev_dev = dlib::cuda::get_device();
// initialize all the other device networks and solver objects
for (size_t i = 1; i < item.devices.size(); ++i)
{
// Switch to this device so that any tensor objects that get allocated when
// we copy this stuff happen on this device.
dlib::cuda::set_device(item.devices[i]->device_id);
item.devices[i]->solvers = item.devices[0]->solvers;
item.devices[i]->net = item.devices[0]->net;
}
dlib::cuda::set_device(prev_dev);
}
}
// Empty out some of the previous loss values so that steps_without_progress will decrease below iter_without_progress_thresh.
void drop_some_previous_loss_values()
{
for (unsigned long cnt = 0; cnt < previous_loss_values_dump_amount + iter_without_progress_thresh / 10 && previous_loss_values.size() > 0; ++cnt)
previous_loss_values.pop_front();
}
// Empty out some of the previous test loss values so that test_steps_without_progress will decrease below test_iter_without_progress_thresh.
void drop_some_test_previous_loss_values()
{
for (unsigned long cnt = 0; cnt < test_previous_loss_values_dump_amount + test_iter_without_progress_thresh / 10 && test_previous_loss_values.size() > 0; ++cnt)
test_previous_loss_values.pop_front();
}
void sync_to_disk (
bool do_it_now = false
)
{
// don't sync anything if we haven't updated the network since the last sync
if (!updated_net_since_last_sync)
return;
// If the sync file isn't set then don't do anything.
if (sync_filename.size() == 0)
return;
// Only sync if it has been long enough since the last sync or we are being
// explicitly forced to do it.
if (std::chrono::system_clock::now() - last_sync_time > time_between_syncs ||
do_it_now)
{
wait_for_thread_to_pause();
// compact network before saving to disk.
this->net.clean();
// if the loss has actually been going up since the last time we saved our
// state to disk then something has probably gone wrong in the
// optimization. So in this case we do the opposite and recall the
// previously saved state in the hopes that the problem won't reoccur.
if (loss_increased_since_last_disk_sync())
{
std::ifstream fin(newest_syncfile(), std::ios::binary);
deserialize(*this, fin);
sync_file_reloaded = true;
if (verbose)
std::cout << "Loss has been increasing, reloading saved state from " << newest_syncfile() << std::endl;
// Are we repeatedly hitting our head against the wall? If so, then we
// might be better off giving up at this learning rate, and trying a
// lower one instead.
if (prob_loss_increasing_thresh >= prob_loss_increasing_thresh_max_value)
{
if (verbose)
std::cout << "(and while at it, also shrinking the learning rate)" << std::endl;
learning_rate = learning_rate_shrink * learning_rate;
steps_without_progress = 0;
test_steps_without_progress = 0;
drop_some_previous_loss_values();
drop_some_test_previous_loss_values();
}
}
else
{
const std::string filename = oldest_syncfile();
serialize(filename) << *this;
if (verbose)
std::cout << "Saved state to " << filename << std::endl;
}
last_sync_time = std::chrono::system_clock::now();
main_iteration_counter_at_last_disk_sync = main_iteration_counter;
updated_net_since_last_sync = false;
}
}
std::string newest_syncfile (
)
{
return select_newest_file(sync_filename, sync_filename + "_");
}
std::string oldest_syncfile (
)
{
return select_oldest_file(sync_filename, sync_filename + "_");
}
bool loss_increased_since_last_disk_sync()
{
size_t gradient_updates_since_last_sync = main_iteration_counter - main_iteration_counter_at_last_disk_sync;
// if we haven't synced anything to disk yet then return false.
if (!std::ifstream(newest_syncfile(), std::ios::binary))
return false;
// Now look at the data since a little before the last disk sync. We will
// check if the loss is getting better or worse.
while (previous_loss_values_to_keep_until_disk_sync.size() > 2 * gradient_updates_since_last_sync)
previous_loss_values_to_keep_until_disk_sync.pop_front();
// Always retry if there are any nan or inf values
for (auto x : previous_loss_values_to_keep_until_disk_sync)
{
if (std::isnan(x) || std::isinf(x))
return true;
}
// if we haven't seen much data yet then just say false.
if (gradient_updates_since_last_sync < 30)
return false;
// if the loss is very likely to be increasing then return true
const double prob1 = probability_values_are_increasing(previous_loss_values_to_keep_until_disk_sync);
const double prob2 = probability_values_are_increasing_robust(previous_loss_values_to_keep_until_disk_sync);
if (std::max(prob1, prob2) > prob_loss_increasing_thresh)
{
// Exponentially decay the threshold towards 1 so that if we keep finding
// the loss to be increasing over and over we will make the test
// progressively harder and harder until it fails, therefore ensuring we
// can't get stuck reloading from a previous state over and over.
prob_loss_increasing_thresh = std::min(
0.1*prob_loss_increasing_thresh + 0.9*1,
prob_loss_increasing_thresh_max_value
);
return true;
}
else
{
// decay back to the default threshold
prob_loss_increasing_thresh = std::pow(prob_loss_increasing_thresh, 10.0);
// but don't decay below the default value
prob_loss_increasing_thresh = std::max(prob_loss_increasing_thresh, prob_loss_increasing_thresh_default_value);
return false;
}
}
struct clone_net{};
// per device state. All the containers have the same number of objects in them.
struct device_data
{
device_data(
int device_id_,
net_type& net_,
const solver_type& solver_
) : device_id(device_id_), net(net_), solvers(num_computational_layers, solver_) {}
device_data(
int device_id_,
net_type& net_,
const solver_type& solver_,
clone_net
) : device_id(device_id_), net_copy(std::make_shared<net_type>(net_)), net(*net_copy), solvers(num_computational_layers, solver_) {}
int device_id;
std::shared_ptr<net_type> net_copy;
net_type& net;
std::vector<solver_type> solvers;
};
template <
typename data_iterator,
typename label_iterator
>
void send_job (
bool test_only,
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
)
{
propagate_exception();
size_t num = std::distance(dbegin, dend);
size_t devs = devices.size();
job.t.resize(devs);
job.labels.resize(devs);
job.have_data.resize(devs);
job.test_only = test_only;
// chop the data into devs blocks, each of about block_size elements.
const double block_size = num / static_cast<double>(devs);
const auto prev_dev = dlib::cuda::get_device();
double j = 0;
for (size_t i = 0; i < devs; ++i)
{
dlib::cuda::set_device(devices[i]->device_id);
const size_t start = static_cast<size_t>(std::round(j));
const size_t stop = static_cast<size_t>(std::round(j + block_size));
if (start < stop)
{
devices[i]->net.to_tensor(dbegin+start, dbegin+stop, job.t[i]);
job.labels[i].assign(lbegin+start, lbegin+stop);
job.have_data[i] = true;
}
else
{
job.have_data[i] = false;
}
j += block_size;
}
DLIB_ASSERT(std::fabs(j - num) < 1e-10);
dlib::cuda::set_device(prev_dev);
job_pipe.enqueue(job);
}
template <
typename data_iterator
>
void send_job (
bool test_only,
data_iterator dbegin,
data_iterator dend
)
{
typename std::vector<training_label_type>::iterator nothing;
send_job(test_only, dbegin, dend, nothing);
}
void print_progress()
{
if (lr_schedule.size() == 0)
{
if (test_previous_loss_values.size() == 0)
std::cout << "steps without apparent progress: " << steps_without_progress;
else
std::cout << "steps without apparent progress: train=" << steps_without_progress << ", test=" << test_steps_without_progress;
}
else
{
std::ostringstream sout;
sout << "percent complete: " << std::fixed << std::setprecision(2) << 100.0*lr_schedule_pos/(double)lr_schedule.size() << "%";
std::cout << sout.str();
}
std::cout << std::endl;
}
void print_periodic_verbose_status()
{
if (verbose)
{
using namespace std::chrono;
auto now_time = system_clock::now();
if (now_time-last_time > seconds(40))
{
last_time = now_time;
std::cout << "step#: " << rpad(cast_to_string(train_one_step_calls),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " ";
if (test_previous_loss_values.size() == 0)
{
std::cout << "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
}
else
{
std::cout << "train loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
std::cout << "test loss: " << rpad(cast_to_string(get_average_test_loss()),string_pad) << " ";
}
print_progress();
clear_average_loss();
}
}
}
std::vector<std::shared_ptr<device_data>> devices;
dlib::pipe<job_t> job_pipe;
std::shared_ptr<threads> thread_pools;
job_t job;
running_stats<double> rs;
running_stats_decayed<double> rs_test;
std::deque<double> previous_loss_values;
unsigned long max_num_epochs;
size_t mini_batch_size;
bool verbose;
net_type& net;
std::atomic<double> learning_rate;
double min_learning_rate;
std::atomic<unsigned long> iter_without_progress_thresh;
std::atomic<unsigned long> steps_without_progress;
std::atomic<unsigned long> test_iter_without_progress_thresh;
std::atomic<unsigned long> test_steps_without_progress;
std::deque<double> test_previous_loss_values;
std::deque<double> previous_loss_values_to_keep_until_disk_sync;
std::atomic<double> learning_rate_shrink;
std::chrono::time_point<std::chrono::system_clock> last_sync_time;
std::string sync_filename;
std::chrono::seconds time_between_syncs;
unsigned long epoch_iteration;
size_t epoch_pos;
std::chrono::time_point<std::chrono::system_clock> last_time;
unsigned long long train_one_step_calls;
unsigned long long test_one_step_calls;
matrix<double,0,1> lr_schedule;
long lr_schedule_pos;
unsigned long gradient_check_budget;
std::exception_ptr eptr = nullptr;
mutable std::mutex eptr_mutex;
void propagate_exception() const
{
std::lock_guard<std::mutex> lock(eptr_mutex);
if (eptr)
std::rethrow_exception(eptr);
}
// These 5 variables are not serialized
size_t main_iteration_counter;
size_t main_iteration_counter_at_last_disk_sync;
double prob_loss_increasing_thresh_default_value;
double prob_loss_increasing_thresh_max_value;
double prob_loss_increasing_thresh;
std::atomic<bool> updated_net_since_last_sync;
bool sync_file_reloaded;
unsigned long previous_loss_values_dump_amount;
unsigned long test_previous_loss_values_dump_amount;
};
// ----------------------------------------------------------------------------------------
template <
typename net_type,
typename solver_type
>
std::ostream& operator<< (
std::ostream& out,
dnn_trainer<net_type,solver_type>& trainer
)
{
using std::endl;
out << "dnn_trainer details: \n";
out << " net_type::num_layers: " << net_type::num_layers << endl;
// figure out how big the net is in MB.
std::ostringstream sout;
net_type temp = trainer.get_net(); // make a copy so that we can clean it without mutating the trainer's net.
temp.clean();
serialize(temp, sout);
out << " net size: " << sout.str().size()/1024.0/1024.0 << " MiB" << endl;
// Don't include the loss params in the hash since we print them on the next line.
// They also aren't really part of the "architecture" of the network.
out << " net architecture hash: " << md5(cast_to_string(trainer.get_net().subnet())) << endl;
out << " loss: " << trainer.get_net().loss_details() << endl;
out << " get_train_one_step_calls(): " << trainer.get_train_one_step_calls() << endl;
out << " synchronization file: " << trainer.get_synchronization_file() << endl;
out << " trainer.get_solvers()[0]: " << trainer.get_solvers()[0] << endl;
out << " mini batch size: " << trainer.get_mini_batch_size() << endl;
auto sched = trainer.get_learning_rate_schedule();
if (sched.size() != 0)
{
out << " using explicit user-supplied learning rate schedule" << endl;
}
else
{
out << " learning rate: "<< trainer.get_learning_rate() << endl;
out << " learning rate shrink factor: "<< trainer.get_learning_rate_shrink_factor() << endl;
out << " min learning rate: "<< trainer.get_min_learning_rate() << endl;
out << " iterations without progress threshold: "<< trainer.get_iterations_without_progress_threshold() << endl;
out << " test iterations without progress threshold: "<< trainer.get_test_iterations_without_progress_threshold() << endl;
}
return out;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_DNn_TRAINER_H_