Aging_MouthReplace / dlibs /docs /dnn_introduction2_ex.cpp.html
AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
<html><!-- Created using the cpp_pretty_printer from the dlib C++ library. See http://dlib.net for updates. --><head><title>dlib C++ Library - dnn_introduction2_ex.cpp</title></head><body bgcolor='white'><pre>
<font color='#009900'>// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
</font><font color='#009900'>/*
This is an example illustrating the use of the deep learning tools from the
dlib C++ Library. I'm assuming you have already read the <a href="dnn_introduction_ex.cpp.html">dnn_introduction_ex.cpp</a>
example. So in this example program I'm going to go over a number of more
advanced parts of the API, including:
- Using multiple GPUs
- Training on large datasets that don't fit in memory
- Defining large networks
- Accessing and configuring layers in a network
*/</font>
<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>dlib<font color='#5555FF'>/</font>dnn.h<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>iostream<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>dlib<font color='#5555FF'>/</font>data_io.h<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> std;
<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> dlib;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#009900'>// Let's start by showing how you can conveniently define large and complex
</font><font color='#009900'>// networks. The most important tool for doing this are C++'s alias templates.
</font><font color='#009900'>// These let us define new layer types that are combinations of a bunch of other
</font><font color='#009900'>// layers. These will form the building blocks for more complex networks.
</font>
<font color='#009900'>// So let's begin by defining the building block of a residual network (see
</font><font color='#009900'>// Figure 2 in Deep Residual Learning for Image Recognition by He, Zhang, Ren,
</font><font color='#009900'>// and Sun). We are going to decompose the residual block into a few alias
</font><font color='#009900'>// statements. First, we define the core block.
</font>
<font color='#009900'>// Here we have parameterized the "block" layer on a BN layer (nominally some
</font><font color='#009900'>// kind of batch normalization), the number of filter outputs N, and the stride
</font><font color='#009900'>// the block operates at.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'><u>int</u></font> N,
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font> <font color='#0000FF'>class</font> <b><a name='BN'></a>BN</b>,
<font color='#0000FF'><u>int</u></font> stride,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> block <font color='#5555FF'>=</font> BN<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font>N,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,relu<font color='#5555FF'>&lt;</font>BN<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font>N,<font color='#979000'>3</font>,<font color='#979000'>3</font>,stride,stride,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// Next, we need to define the skip layer mechanism used in the residual network
</font><font color='#009900'>// paper. They create their blocks by adding the input tensor to the output of
</font><font color='#009900'>// each block. So we define an alias statement that takes a block and wraps it
</font><font color='#009900'>// with this skip/add structure.
</font>
<font color='#009900'>// Note the tag layer. This layer doesn't do any computation. It exists solely
</font><font color='#009900'>// so other layers can refer to it. In this case, the add_prev1 layer looks for
</font><font color='#009900'>// the tag1 layer and will take the tag1 output and add it to the input of the
</font><font color='#009900'>// add_prev1 layer. This combination allows us to implement skip and residual
</font><font color='#009900'>// style networks. We have also set the block stride to 1 in this statement.
</font><font color='#009900'>// The significance of that is explained next.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font>,<font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font> <font color='#0000FF'>class</font> <b><a name='block'></a>block</b>,
<font color='#0000FF'><u>int</u></font> N,
<font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font> <b><a name='BN'></a>BN</b>,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> residual <font color='#5555FF'>=</font> add_prev1<font color='#5555FF'>&lt;</font>block<font color='#5555FF'>&lt;</font>N,BN,<font color='#979000'>1</font>,tag1<font color='#5555FF'>&lt;</font>SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// Some residual blocks do downsampling. They do this by using a stride of 2
</font><font color='#009900'>// instead of 1. However, when downsampling we need to also take care to
</font><font color='#009900'>// downsample the part of the network that adds the original input to the output
</font><font color='#009900'>// or the sizes won't make sense (the network will still run, but the results
</font><font color='#009900'>// aren't as good). So here we define a downsampling version of residual. In
</font><font color='#009900'>// it, we make use of the skip1 layer. This layer simply outputs whatever is
</font><font color='#009900'>// output by the tag1 layer. Therefore, the skip1 layer (there are also skip2,
</font><font color='#009900'>// skip3, etc. in dlib) allows you to create branching network structures.
</font>
<font color='#009900'>// residual_down creates a network structure like this:
</font><font color='#009900'>/*
input from SUBNET
/ \
/ \
block downsample(using avg_pool)
\ /
\ /
add tensors (using add_prev2 which adds the output of tag2 with avg_pool's output)
|
output
*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font>,<font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font> <font color='#0000FF'>class</font> <b><a name='block'></a>block</b>,
<font color='#0000FF'><u>int</u></font> N,
<font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font> <b><a name='BN'></a>BN</b>,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> residual_down <font color='#5555FF'>=</font> add_prev2<font color='#5555FF'>&lt;</font>avg_pool<font color='#5555FF'>&lt;</font><font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,skip1<font color='#5555FF'>&lt;</font>tag2<font color='#5555FF'>&lt;</font>block<font color='#5555FF'>&lt;</font>N,BN,<font color='#979000'>2</font>,tag1<font color='#5555FF'>&lt;</font>SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// Now we can define 4 different residual blocks we will use in this example.
</font><font color='#009900'>// The first two are non-downsampling residual blocks while the last two
</font><font color='#009900'>// downsample. Also, res and res_down use batch normalization while ares and
</font><font color='#009900'>// ares_down have had the batch normalization replaced with simple affine
</font><font color='#009900'>// layers. We will use the affine version of the layers when testing our
</font><font color='#009900'>// networks.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> res <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,bn_con,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> ares <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,affine,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> res_down <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual_down<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,bn_con,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> ares_down <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual_down<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,affine,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// Now that we have these convenient aliases, we can define a residual network
</font><font color='#009900'>// without a lot of typing. Note the use of a repeat layer. This special layer
</font><font color='#009900'>// type allows us to type repeat&lt;9,res,SUBNET&gt; instead of
</font><font color='#009900'>// res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;SUBNET&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;. It will also prevent
</font><font color='#009900'>// the compiler from complaining about super deep template nesting when creating
</font><font color='#009900'>// large networks.
</font><font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> number_of_classes <font color='#5555FF'>=</font> <font color='#979000'>10</font>;
<font color='#0000FF'>using</font> net_type <font color='#5555FF'>=</font> loss_multiclass_log<font color='#5555FF'>&lt;</font>fc<font color='#5555FF'>&lt;</font>number_of_classes,
avg_pool_everything<font color='#5555FF'>&lt;</font>
res<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res_down<font color='#5555FF'>&lt;</font>
repeat<font color='#5555FF'>&lt;</font><font color='#979000'>9</font>,res, <font color='#009900'>// repeat this layer 9 times
</font> res_down<font color='#5555FF'>&lt;</font>
res<font color='#5555FF'>&lt;</font>
input<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>
<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// And finally, let's define a residual network building block that uses
</font><font color='#009900'>// parametric ReLU units instead of regular ReLU.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> pres <font color='#5555FF'>=</font> prelu<font color='#5555FF'>&lt;</font>add_prev1<font color='#5555FF'>&lt;</font>bn_con<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>8</font>,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,prelu<font color='#5555FF'>&lt;</font>bn_con<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>8</font>,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,tag1<font color='#5555FF'>&lt;</font>SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>int</u></font> <b><a name='main'></a>main</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>int</u></font> argc, <font color='#0000FF'><u>char</u></font><font color='#5555FF'>*</font><font color='#5555FF'>*</font> argv<font face='Lucida Console'>)</font> <font color='#0000FF'>try</font>
<b>{</b>
<font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>argc <font color='#5555FF'>!</font><font color='#5555FF'>=</font> <font color='#979000'>2</font><font face='Lucida Console'>)</font>
<b>{</b>
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>This example needs the MNIST dataset to run!</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>You can get MNIST from http://yann.lecun.com/exdb/mnist/</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>Download the 4 files that comprise the dataset, decompress them, and</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>put them in a folder. Then give that folder as input to this program.</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
<font color='#0000FF'>return</font> <font color='#979000'>1</font>;
<b>}</b>
std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> training_images;
std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> training_labels;
std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> testing_images;
std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> testing_labels;
<font color='#BB00BB'>load_mnist_dataset</font><font face='Lucida Console'>(</font>argv[<font color='#979000'>1</font>], training_images, training_labels, testing_images, testing_labels<font face='Lucida Console'>)</font>;
<font color='#009900'>// dlib uses cuDNN under the covers. One of the features of cuDNN is the
</font> <font color='#009900'>// option to use slower methods that use less RAM or faster methods that use
</font> <font color='#009900'>// a lot of RAM. If you find that you run out of RAM on your graphics card
</font> <font color='#009900'>// then you can call this function and we will request the slower but more
</font> <font color='#009900'>// RAM frugal cuDNN algorithms.
</font> <font color='#BB00BB'>set_dnn_prefer_smallest_algorithms</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// Create a network as defined above. This network will produce 10 outputs
</font> <font color='#009900'>// because that's how we defined net_type. However, fc layers can have the
</font> <font color='#009900'>// number of outputs they produce changed at runtime.
</font> net_type net;
<font color='#009900'>// So if you wanted to use the same network but override the number of
</font> <font color='#009900'>// outputs at runtime you can do so like this:
</font> net_type <font color='#BB00BB'>net2</font><font face='Lucida Console'>(</font><font color='#BB00BB'>num_fc_outputs</font><font face='Lucida Console'>(</font><font color='#979000'>15</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// Now, let's imagine we wanted to replace some of the relu layers with
</font> <font color='#009900'>// prelu layers. We might do it like this:
</font> <font color='#0000FF'>using</font> net_type2 <font color='#5555FF'>=</font> loss_multiclass_log<font color='#5555FF'>&lt;</font>fc<font color='#5555FF'>&lt;</font>number_of_classes,
avg_pool_everything<font color='#5555FF'>&lt;</font>
pres<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res_down<font color='#5555FF'>&lt;</font> <font color='#009900'>// 2 prelu layers here
</font> tag4<font color='#5555FF'>&lt;</font>repeat<font color='#5555FF'>&lt;</font><font color='#979000'>9</font>,pres, <font color='#009900'>// 9 groups, each containing 2 prelu layers
</font> res_down<font color='#5555FF'>&lt;</font>
res<font color='#5555FF'>&lt;</font>
input<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>
<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// prelu layers have a floating point parameter. If you want to set it to
</font> <font color='#009900'>// something other than its default value you can do so like this:
</font> net_type2 <font color='#BB00BB'>pnet</font><font face='Lucida Console'>(</font><font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.2</font><font face='Lucida Console'>)</font>,
<font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.25</font><font face='Lucida Console'>)</font>,
<font color='#BB00BB'>repeat_group</font><font face='Lucida Console'>(</font><font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.3</font><font face='Lucida Console'>)</font>,<font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.4</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font> <font color='#009900'>// Initialize all the prelu instances in the repeat
</font> <font color='#009900'>// layer. repeat_group() is needed to group the
</font> <font color='#009900'>// things that are part of repeat's block.
</font> <font face='Lucida Console'>)</font>;
<font color='#009900'>// As you can see, a network will greedily assign things given to its
</font> <font color='#009900'>// constructor to the layers inside itself. The assignment is done in the
</font> <font color='#009900'>// order the layers are defined, but it will skip layers where the
</font> <font color='#009900'>// assignment doesn't make sense.
</font>
<font color='#009900'>// Now let's print the details of the pnet to the screen and inspect it.
</font> cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>The pnet has </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> pnet.num_layers <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'> layers in it.</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> pnet <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
<font color='#009900'>// These print statements will output this (I've truncated it since it's
</font> <font color='#009900'>// long, but you get the idea):
</font> <font color='#009900'>/*
The pnet has 131 layers in it.
layer&lt;0&gt; loss_multiclass_log
layer&lt;1&gt; fc (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer&lt;2&gt; avg_pool (nr=0, nc=0, stride_y=1, stride_x=1, padding_y=0, padding_x=0)
layer&lt;3&gt; prelu (initial_param_value=0.2)
layer&lt;4&gt; add_prev1
layer&lt;5&gt; bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer&lt;6&gt; con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer&lt;7&gt; prelu (initial_param_value=0.25)
layer&lt;8&gt; bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer&lt;9&gt; con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer&lt;10&gt; tag1
...
layer&lt;34&gt; relu
layer&lt;35&gt; bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer&lt;36&gt; con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer&lt;37&gt; tag1
layer&lt;38&gt; tag4
layer&lt;39&gt; prelu (initial_param_value=0.3)
layer&lt;40&gt; add_prev1
layer&lt;41&gt; bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
...
layer&lt;118&gt; relu
layer&lt;119&gt; bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer&lt;120&gt; con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer&lt;121&gt; tag1
layer&lt;122&gt; relu
layer&lt;123&gt; add_prev1
layer&lt;124&gt; bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer&lt;125&gt; con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer&lt;126&gt; relu
layer&lt;127&gt; bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer&lt;128&gt; con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer&lt;129&gt; tag1
layer&lt;130&gt; input&lt;matrix&gt;
*/</font>
<font color='#009900'>// Now that we know the index numbers for each layer, we can access them
</font> <font color='#009900'>// individually using layer&lt;index&gt;(pnet). For example, to access the output
</font> <font color='#009900'>// tensor for the first prelu layer we can say:
</font> layer<font color='#5555FF'>&lt;</font><font color='#979000'>3</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>.<font color='#BB00BB'>get_output</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// Or to print the prelu parameter for layer 7 we can say:
</font> cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>prelu param: </font>"<font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> layer<font color='#5555FF'>&lt;</font><font color='#979000'>7</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>.<font color='#BB00BB'>layer_details</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>.<font color='#BB00BB'>get_initial_param_value</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
<font color='#009900'>// We can also access layers by their type. This next statement finds the
</font> <font color='#009900'>// first tag1 layer in pnet, and is therefore equivalent to calling
</font> <font color='#009900'>// layer&lt;10&gt;(pnet):
</font> layer<font color='#5555FF'>&lt;</font>tag1<font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>;
<font color='#009900'>// The tag layers don't do anything at all and exist simply so you can tag
</font> <font color='#009900'>// parts of your network and access them by layer&lt;tag&gt;(). You can also
</font> <font color='#009900'>// index relative to a tag. So for example, to access the layer immediately
</font> <font color='#009900'>// after tag4 you can say:
</font> layer<font color='#5555FF'>&lt;</font>tag4,<font color='#979000'>1</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>; <font color='#009900'>// Equivalent to layer&lt;38+1&gt;(pnet).
</font>
<font color='#009900'>// Or to access the layer 2 layers after tag4:
</font> layer<font color='#5555FF'>&lt;</font>tag4,<font color='#979000'>2</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>;
<font color='#009900'>// Tagging is a very useful tool for making complex network structures. For
</font> <font color='#009900'>// example, the add_prev1 layer is implemented internally by using a call to
</font> <font color='#009900'>// layer&lt;tag1&gt;().
</font>
<font color='#009900'>// Ok, that's enough talk about defining and inspecting networks. Let's
</font> <font color='#009900'>// talk about training networks!
</font>
<font color='#009900'>// The dnn_trainer will use SGD by default, but you can tell it to use
</font> <font color='#009900'>// different solvers like adam with a weight decay of 0.0005 and the given
</font> <font color='#009900'>// momentum parameters.
</font> dnn_trainer<font color='#5555FF'>&lt;</font>net_type,adam<font color='#5555FF'>&gt;</font> <font color='#BB00BB'>trainer</font><font face='Lucida Console'>(</font>net,<font color='#BB00BB'>adam</font><font face='Lucida Console'>(</font><font color='#979000'>0.0005</font>, <font color='#979000'>0.9</font>, <font color='#979000'>0.999</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// Also, if you have multiple graphics cards you can tell the trainer to use
</font> <font color='#009900'>// them together to make the training faster. For example, replacing the
</font> <font color='#009900'>// above constructor call with this one would cause it to use GPU cards 0
</font> <font color='#009900'>// and 1.
</font> <font color='#009900'>//dnn_trainer&lt;net_type,adam&gt; trainer(net,adam(0.0005, 0.9, 0.999), {0,1});
</font>
trainer.<font color='#BB00BB'>be_verbose</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// While the trainer is running it keeps an eye on the training error. If
</font> <font color='#009900'>// it looks like the error hasn't decreased for the last 2000 iterations it
</font> <font color='#009900'>// will automatically reduce the learning rate by 0.1. You can change these
</font> <font color='#009900'>// default parameters to some other values by calling these functions. Or
</font> <font color='#009900'>// disable the automatic shrinking entirely by setting the shrink factor to 1.
</font> trainer.<font color='#BB00BB'>set_iterations_without_progress_threshold</font><font face='Lucida Console'>(</font><font color='#979000'>2000</font><font face='Lucida Console'>)</font>;
trainer.<font color='#BB00BB'>set_learning_rate_shrink_factor</font><font face='Lucida Console'>(</font><font color='#979000'>0.1</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// The learning rate will start at 1e-3.
</font> trainer.<font color='#BB00BB'>set_learning_rate</font><font face='Lucida Console'>(</font><font color='#979000'>1e</font><font color='#5555FF'>-</font><font color='#979000'>3</font><font face='Lucida Console'>)</font>;
trainer.<font color='#BB00BB'>set_synchronization_file</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>mnist_resnet_sync</font>", std::chrono::<font color='#BB00BB'>seconds</font><font face='Lucida Console'>(</font><font color='#979000'>100</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// Now, what if your training dataset is so big it doesn't fit in RAM? You
</font> <font color='#009900'>// make mini-batches yourself, any way you like, and you send them to the
</font> <font color='#009900'>// trainer by repeatedly calling trainer.train_one_step().
</font> <font color='#009900'>//
</font> <font color='#009900'>// For example, the loop below stream MNIST data to out trainer.
</font> std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> mini_batch_samples;
std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> mini_batch_labels;
dlib::rand <font color='#BB00BB'>rnd</font><font face='Lucida Console'>(</font><font color='#BB00BB'>time</font><font face='Lucida Console'>(</font><font color='#979000'>0</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// Loop until the trainer's automatic shrinking has shrunk the learning rate to 1e-6.
</font> <font color='#009900'>// Given our settings, this means it will stop training after it has shrunk the
</font> <font color='#009900'>// learning rate 3 times.
</font> <font color='#0000FF'>while</font><font face='Lucida Console'>(</font>trainer.<font color='#BB00BB'>get_learning_rate</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&gt;</font><font color='#5555FF'>=</font> <font color='#979000'>1e</font><font color='#5555FF'>-</font><font color='#979000'>6</font><font face='Lucida Console'>)</font>
<b>{</b>
mini_batch_samples.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
mini_batch_labels.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// make a 128 image mini-batch
</font> <font color='#0000FF'>while</font><font face='Lucida Console'>(</font>mini_batch_samples.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font> <font color='#979000'>128</font><font face='Lucida Console'>)</font>
<b>{</b>
<font color='#0000FF'>auto</font> idx <font color='#5555FF'>=</font> rnd.<font color='#BB00BB'>get_random_32bit_number</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>%</font>training_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
mini_batch_samples.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>training_images[idx]<font face='Lucida Console'>)</font>;
mini_batch_labels.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>training_labels[idx]<font face='Lucida Console'>)</font>;
<b>}</b>
<font color='#009900'>// Tell the trainer to update the network given this mini-batch
</font> trainer.<font color='#BB00BB'>train_one_step</font><font face='Lucida Console'>(</font>mini_batch_samples, mini_batch_labels<font face='Lucida Console'>)</font>;
<font color='#009900'>// You can also feed validation data into the trainer by periodically
</font> <font color='#009900'>// calling trainer.test_one_step(samples,labels). Unlike train_one_step(),
</font> <font color='#009900'>// test_one_step() doesn't modify the network, it only computes the testing
</font> <font color='#009900'>// error which it records internally. This testing error will then be print
</font> <font color='#009900'>// in the verbose logging and will also determine when the trainer's
</font> <font color='#009900'>// automatic learning rate shrinking happens. Therefore, test_one_step()
</font> <font color='#009900'>// can be used to perform automatic early stopping based on held out data.
</font> <b>}</b>
<font color='#009900'>// When you call train_one_step(), the trainer will do its processing in a
</font> <font color='#009900'>// separate thread. This allows the main thread to work on loading data
</font> <font color='#009900'>// while the trainer is busy executing the mini-batches in parallel.
</font> <font color='#009900'>// However, this also means we need to wait for any mini-batches that are
</font> <font color='#009900'>// still executing to stop before we mess with the net object. Calling
</font> <font color='#009900'>// get_net() performs the necessary synchronization.
</font> trainer.<font color='#BB00BB'>get_net</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
net.<font color='#BB00BB'>clean</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#BB00BB'>serialize</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>mnist_res_network.dat</font>"<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> net;
<font color='#009900'>// Now we have a trained network. However, it has batch normalization
</font> <font color='#009900'>// layers in it. As is customary, we should replace these with simple
</font> <font color='#009900'>// affine layers before we use the network. This can be accomplished by
</font> <font color='#009900'>// making a network type which is identical to net_type but with the batch
</font> <font color='#009900'>// normalization layers replaced with affine. For example:
</font> <font color='#0000FF'>using</font> test_net_type <font color='#5555FF'>=</font> loss_multiclass_log<font color='#5555FF'>&lt;</font>fc<font color='#5555FF'>&lt;</font>number_of_classes,
avg_pool_everything<font color='#5555FF'>&lt;</font>
ares<font color='#5555FF'>&lt;</font>ares<font color='#5555FF'>&lt;</font>ares<font color='#5555FF'>&lt;</font>ares_down<font color='#5555FF'>&lt;</font>
repeat<font color='#5555FF'>&lt;</font><font color='#979000'>9</font>,ares,
ares_down<font color='#5555FF'>&lt;</font>
ares<font color='#5555FF'>&lt;</font>
input<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>
<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#009900'>// Then we can simply assign our trained net to our testing net.
</font> test_net_type tnet <font color='#5555FF'>=</font> net;
<font color='#009900'>// Or if you only had a file with your trained network you could deserialize
</font> <font color='#009900'>// it directly into your testing network.
</font> <font color='#BB00BB'>deserialize</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>mnist_res_network.dat</font>"<font face='Lucida Console'>)</font> <font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> tnet;
<font color='#009900'>// And finally, we can run the testing network over our data.
</font>
std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> predicted_labels <font color='#5555FF'>=</font> <font color='#BB00BB'>tnet</font><font face='Lucida Console'>(</font>training_images<font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>int</u></font> num_right <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#0000FF'><u>int</u></font> num_wrong <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>0</font>; i <font color='#5555FF'>&lt;</font> training_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
<b>{</b>
<font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>predicted_labels[i] <font color='#5555FF'>=</font><font color='#5555FF'>=</font> training_labels[i]<font face='Lucida Console'>)</font>
<font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_right;
<font color='#0000FF'>else</font>
<font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_wrong;
<b>}</b>
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training num_right: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training num_wrong: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_wrong <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training accuracy: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right<font color='#5555FF'>/</font><font face='Lucida Console'>(</font><font color='#0000FF'><u>double</u></font><font face='Lucida Console'>)</font><font face='Lucida Console'>(</font>num_right<font color='#5555FF'>+</font>num_wrong<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
predicted_labels <font color='#5555FF'>=</font> <font color='#BB00BB'>tnet</font><font face='Lucida Console'>(</font>testing_images<font face='Lucida Console'>)</font>;
num_right <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
num_wrong <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>0</font>; i <font color='#5555FF'>&lt;</font> testing_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
<b>{</b>
<font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>predicted_labels[i] <font color='#5555FF'>=</font><font color='#5555FF'>=</font> testing_labels[i]<font face='Lucida Console'>)</font>
<font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_right;
<font color='#0000FF'>else</font>
<font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_wrong;
<b>}</b>
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing num_right: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing num_wrong: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_wrong <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing accuracy: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right<font color='#5555FF'>/</font><font face='Lucida Console'>(</font><font color='#0000FF'><u>double</u></font><font face='Lucida Console'>)</font><font face='Lucida Console'>(</font>num_right<font color='#5555FF'>+</font>num_wrong<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
<b>}</b>
<font color='#0000FF'>catch</font><font face='Lucida Console'>(</font>std::exception<font color='#5555FF'>&amp;</font> e<font face='Lucida Console'>)</font>
<b>{</b>
cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> e.<font color='#BB00BB'>what</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
<b>}</b>
</pre></body></html>