AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
// Copyright (C) 2013 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry.h>
#include <dlib/image_transforms.h>
#include <pybind11/stl_bind.h>
#include "indexing.h"
using namespace dlib;
using namespace std;
typedef matrix<double,0,1> cv;
void cv_set_size(cv& m, long s)
{
m.set_size(s);
m = 0;
}
double dotprod ( const cv& a, const cv& b)
{
return dot(a,b);
}
string cv__str__(const cv& v)
{
ostringstream sout;
for (long i = 0; i < v.size(); ++i)
{
sout << v(i);
if (i+1 < v.size())
sout << "\n";
}
return sout.str();
}
string cv__repr__ (const cv& v)
{
std::ostringstream sout;
sout << "dlib.vector([";
for (long i = 0; i < v.size(); ++i)
{
sout << v(i);
if (i+1 < v.size())
sout << ", ";
}
sout << "])";
return sout.str();
}
std::shared_ptr<cv> cv_from_object(py::object obj)
{
try {
long nr = obj.cast<long>();
auto temp = std::make_shared<cv>(nr);
*temp = 0;
return temp;
} catch(py::cast_error&) {
py::list li = obj.cast<py::list>();
const long nr = len(obj);
auto temp = std::make_shared<cv>(nr);
for ( long r = 0; r < nr; ++r)
{
(*temp)(r) = li[r].cast<double>();
}
return temp;
}
}
long cv__len__(cv& c)
{
return c.size();
}
void cv__setitem__(cv& c, long p, double val)
{
if (p < 0) {
p = c.size() + p; // negative index
}
if (p > c.size()-1) {
PyErr_SetString( PyExc_IndexError, "index out of range"
);
throw py::error_already_set();
}
c(p) = val;
}
double cv__getitem__(cv& m, long r)
{
if (r < 0) {
r = m.size() + r; // negative index
}
if (r > m.size()-1 || r < 0) {
PyErr_SetString( PyExc_IndexError, "index out of range"
);
throw py::error_already_set();
}
return m(r);
}
cv cv__getitem2__(cv& m, py::slice r)
{
size_t start, stop, step, slicelength;
if (!r.compute(m.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
cv temp(slicelength);
for (size_t i = 0; i < slicelength; ++i) {
temp(i) = m(start); start += step;
}
return temp;
}
py::tuple cv_get_matrix_size(cv& m)
{
return py::make_tuple(m.nr(), m.nc());
}
// ----------------------------------------------------------------------------------------
string point_transform_projective__repr__ (const point_transform_projective& tform)
{
std::ostringstream sout;
sout << "point_transform_projective(\n" << csv << tform.get_m() << ")";
return sout.str();
}
string point_transform_projective__str__(const point_transform_projective& tform)
{
std::ostringstream sout;
sout << "(" << csv << tform.get_m() << ")";
return sout.str();
}
point_transform_projective init_point_transform_projective (
const numpy_image<double>& m_
)
{
const_image_view<numpy_image<double>> m(m_);
DLIB_CASSERT(m.nr() == 3 && m.nc() == 3,
"The matrix used to construct a point_transform_projective object must be 3x3.");
return point_transform_projective(mat(m));
}
// ----------------------------------------------------------------------------------------
string point__repr__ (const point& p)
{
std::ostringstream sout;
sout << "point(" << p.x() << ", " << p.y() << ")";
return sout.str();
}
string point__str__(const point& p)
{
std::ostringstream sout;
sout << "(" << p.x() << ", " << p.y() << ")";
return sout.str();
}
string dpoint__repr__ (const dpoint& p)
{
std::ostringstream sout;
sout << "dpoint(" << p.x() << ", " << p.y() << ")";
return sout.str();
}
string dpoint__str__(const dpoint& p)
{
std::ostringstream sout;
sout << "(" << p.x() << ", " << p.y() << ")";
return sout.str();
}
long point_x(const point& p) { return p.x(); }
long point_y(const point& p) { return p.y(); }
double dpoint_x(const dpoint& p) { return p.x(); }
double dpoint_y(const dpoint& p) { return p.y(); }
// ----------------------------------------------------------------------------------------
template <typename T>
dlib::vector<T,2> numpy_to_dlib_vect (
const py::array_t<T>& v
)
/*!
ensures
- converts a numpy array with 2 elements into a dlib::vector<T,2>
!*/
{
DLIB_CASSERT(v.size() == 2, "You can only convert a numpy array to a dlib point or dpoint if it has just 2 elements.");
DLIB_CASSERT(v.ndim() == 1 || v.ndim() == 2, "The input needs to be interpretable as a row or column vector.");
dpoint temp;
if (v.ndim() == 1)
{
temp.x() = v.at(0);
temp.y() = v.at(1);
}
else if (v.shape(0) == 2)
{
temp.x() = v.at(0,0);
temp.y() = v.at(1,0);
}
else
{
temp.x() = v.at(0,0);
temp.y() = v.at(0,1);
}
return temp;
}
// ----------------------------------------------------------------------------------------
point_transform_projective py_find_projective_transform (
const std::vector<dpoint>& from_points,
const std::vector<dpoint>& to_points
)
{
DLIB_CASSERT(from_points.size() == to_points.size(),
"from_points and to_points must have the same number of points.");
DLIB_CASSERT(from_points.size() >= 4,
"You need at least 4 points to find a projective transform.");
return find_projective_transform(from_points, to_points);
}
template <typename T>
point_transform_projective py_find_projective_transform2 (
const numpy_image<T>& from_points_,
const numpy_image<T>& to_points_
)
{
const_image_view<numpy_image<T>> from_points(from_points_);
const_image_view<numpy_image<T>> to_points(to_points_);
DLIB_CASSERT(from_points.nc() == 2 && to_points.nc() == 2,
"Both from_points and to_points must be arrays with 2 columns.");
DLIB_CASSERT(from_points.nr() == to_points.nr(),
"from_points and to_points must have the same number of rows.");
DLIB_CASSERT(from_points.nr() >= 4,
"You need at least 4 rows in the input matrices to find a projective transform.");
std::vector<dpoint> from, to;
for (long r = 0; r < from_points.nr(); ++r)
{
from.push_back(dpoint(from_points[r][0], from_points[r][1]));
to.push_back(dpoint(to_points[r][0], to_points[r][1]));
}
return find_projective_transform(from, to);
}
// ----------------------------------------------------------------------------------------
void register_point_transform_projective(
py::module& m
)
{
py::class_<point_transform_projective>(m, "point_transform_projective",
"This is an object that takes 2D points and applies a projective transformation to them.")
.def(py::init<>(),
"ensures \n\
- This object will perform the identity transform. That is, given a point \n\
as input it will return the same point as output. Therefore, self.m == a 3x3 identity matrix."
/*!
ensures
- This object will perform the identity transform. That is, given a point
as input it will return the same point as output. Therefore, self.m == a 3x3 identity matrix.
!*/
)
.def(py::init<>(&init_point_transform_projective), py::arg("m"),
"ensures \n\
- self.m == m"
)
.def("__repr__", &point_transform_projective__repr__)
.def("__str__", &point_transform_projective__str__)
.def("__call__", [](const point_transform_projective& tform, const dpoint& p){return tform(p);}, py::arg("p"),
"ensures \n\
- Applies the projective transformation defined by this object's constructor \n\
to p and returns the result. To define this precisely: \n\
- let p_h == the point p in homogeneous coordinates. That is: \n\
- p_h.x == p.x \n\
- p_h.y == p.y \n\
- p_h.z == 1 \n\
- let x == m*p_h \n\
- Then this function returns the value x/x.z"
/*!
ensures
- Applies the projective transformation defined by this object's constructor
to p and returns the result. To define this precisely:
- let p_h == the point p in homogeneous coordinates. That is:
- p_h.x == p.x
- p_h.y == p.y
- p_h.z == 1
- let x == m*p_h
- Then this function returns the value x/x.z
!*/
)
.def_property_readonly("m", [](const point_transform_projective& tform){numpy_image<double> tmp; assign_image(tmp,tform.get_m()); return tmp;},
"m is the 3x3 matrix that defines the projective transformation.")
.def(py::pickle(&getstate<point_transform_projective>, &setstate<point_transform_projective>));
m.def("inv", [](const point_transform_projective& tform){return inv(tform); }, py::arg("trans"),
"ensures \n\
- If trans is an invertible transformation then this function returns a new \n\
transformation that is the inverse of trans. "
/*!
ensures
- If trans is an invertible transformation then this function returns a new
transformation that is the inverse of trans.
!*/
);
m.def("find_projective_transform", &py_find_projective_transform, py::arg("from_points"), py::arg("to_points"),
"requires \n\
- len(from_points) == len(to_points) \n\
- len(from_points) >= 4 \n\
ensures \n\
- returns a point_transform_projective object, T, such that for all valid i: \n\
length(T(from_points[i]) - to_points[i]) \n\
is minimized as often as possible. That is, this function finds the projective \n\
transform that maps points in from_points to points in to_points. If no \n\
projective transform exists which performs this mapping exactly then the one \n\
which minimizes the mean squared error is selected. "
/*!
requires
- len(from_points) == len(to_points)
- len(from_points) >= 4
ensures
- returns a point_transform_projective object, T, such that for all valid i:
length(T(from_points[i]) - to_points[i])
is minimized as often as possible. That is, this function finds the projective
transform that maps points in from_points to points in to_points. If no
projective transform exists which performs this mapping exactly then the one
which minimizes the mean squared error is selected.
!*/
);
const char* docs =
"requires \n\
- from_points and to_points have two columns and the same number of rows. \n\
Moreover, they have at least 4 rows. \n\
ensures \n\
- returns a point_transform_projective object, T, such that for all valid i: \n\
length(T(dpoint(from_points[i])) - dpoint(to_points[i])) \n\
is minimized as often as possible. That is, this function finds the projective \n\
transform that maps points in from_points to points in to_points. If no \n\
projective transform exists which performs this mapping exactly then the one \n\
which minimizes the mean squared error is selected. ";
/*!
requires
- from_points and to_points have two columns and the same number of rows.
Moreover, they have at least 4 rows.
ensures
- returns a point_transform_projective object, T, such that for all valid i:
length(T(dpoint(from_points[i])) - dpoint(to_points[i]))
is minimized as often as possible. That is, this function finds the projective
transform that maps points in from_points to points in to_points. If no
projective transform exists which performs this mapping exactly then the one
which minimizes the mean squared error is selected.
!*/
m.def("find_projective_transform", &py_find_projective_transform2<float>, py::arg("from_points"), py::arg("to_points"), docs);
m.def("find_projective_transform", &py_find_projective_transform2<double>, py::arg("from_points"), py::arg("to_points"), docs);
}
// ----------------------------------------------------------------------------------------
double py_polygon_area(
const std::vector<dpoint>& pts
)
{
return polygon_area(pts);
}
double py_polygon_area2(
const py::list& pts
)
{
std::vector<dpoint> temp(len(pts));
for (size_t i = 0; i < temp.size(); ++i)
temp[i] = pts[i].cast<dpoint>();
return polygon_area(temp);
}
// ----------------------------------------------------------------------------------------
void bind_vector(py::module& m)
{
{
py::class_<cv, std::shared_ptr<cv>>(m, "vector", "This object represents the mathematical idea of a column vector.")
.def(py::init())
.def("set_size", &cv_set_size)
.def("resize", &cv_set_size)
.def(py::init(&cv_from_object))
.def("__repr__", &cv__repr__)
.def("__str__", &cv__str__)
.def("__len__", &cv__len__)
.def("__getitem__", &cv__getitem__)
.def("__getitem__", &cv__getitem2__)
.def("__setitem__", &cv__setitem__)
.def_property_readonly("shape", &cv_get_matrix_size)
.def(py::pickle(&getstate<cv>, &setstate<cv>));
m.def("dot", &dotprod, "Compute the dot product between two dense column vectors.");
}
{
typedef point type;
py::class_<type>(m, "point", "This object represents a single point of integer coordinates that maps directly to a dlib::point.")
.def(py::init<long,long>(), py::arg("x"), py::arg("y"))
.def(py::init<dpoint>(), py::arg("p"))
.def(py::init<>(&numpy_to_dlib_vect<long>), py::arg("v"))
.def(py::init<>(&numpy_to_dlib_vect<float>), py::arg("v"))
.def(py::init<>(&numpy_to_dlib_vect<double>), py::arg("v"))
.def("__repr__", &point__repr__)
.def("__str__", &point__str__)
.def(py::self + py::self)
.def(py::self - py::self)
.def(py::self / double())
.def(py::self * double())
.def(double() * py::self)
.def("normalize", &type::normalize, "Returns a unit normalized copy of this vector.")
.def_property("x", &point_x, [](point& p, long x){p.x()=x;}, "The x-coordinate of the point.")
.def_property("y", &point_y, [](point& p, long y){p.y()=y;}, "The y-coordinate of the point.")
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<point> type;
py::bind_vector<type>(m, "points", "An array of point objects.")
.def(py::init<size_t>(), py::arg("initial_size"))
.def("clear", &type::clear)
.def("resize", resize<type>)
.def("extend", extend_vector_with_python_list<point>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef dpoint type;
py::class_<type>(m, "dpoint", "This object represents a single point of floating point coordinates that maps directly to a dlib::dpoint.")
.def(py::init<double,double>(), py::arg("x"), py::arg("y"))
.def(py::init<point>(), py::arg("p"))
.def(py::init<>(&numpy_to_dlib_vect<long>), py::arg("v"))
.def(py::init<>(&numpy_to_dlib_vect<float>), py::arg("v"))
.def(py::init<>(&numpy_to_dlib_vect<double>), py::arg("v"))
.def("__repr__", &dpoint__repr__)
.def("__str__", &dpoint__str__)
.def("normalize", &type::normalize, "Returns a unit normalized copy of this vector.")
.def_property("x", &dpoint_x, [](dpoint& p, double x){p.x()=x;}, "The x-coordinate of the dpoint.")
.def_property("y", &dpoint_y, [](dpoint& p, double y){p.y()=y;}, "The y-coordinate of the dpoint.")
.def(py::self + py::self)
.def(py::self - py::self)
.def(py::self / double())
.def(py::self * double())
.def(double() * py::self)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<dpoint> type;
py::bind_vector<type>(m, "dpoints", "An array of dpoint objects.")
.def(py::init<size_t>(), py::arg("initial_size"))
.def("clear", &type::clear)
.def("resize", resize<type>)
.def("extend", extend_vector_with_python_list<dpoint>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
m.def("length", [](const point& p){return length(p); },
"returns the distance from p to the origin, i.e. the L2 norm of p.", py::arg("p"));
m.def("length", [](const dpoint& p){return length(p); },
"returns the distance from p to the origin, i.e. the L2 norm of p.", py::arg("p"));
m.def("dot", [](const point& a, const point& b){return dot(a,b); }, "Returns the dot product of the points a and b.", py::arg("a"), py::arg("b"));
m.def("dot", [](const dpoint& a, const dpoint& b){return dot(a,b); }, "Returns the dot product of the points a and b.", py::arg("a"), py::arg("b"));
register_point_transform_projective(m);
m.def("polygon_area", &py_polygon_area, py::arg("pts"));
m.def("polygon_area", &py_polygon_area2, py::arg("pts"),
"ensures \n\
- If you walk the points pts in order to make a closed polygon, what is its \n\
area? This function returns that area. It uses the shoelace formula to \n\
compute the result and so works for general non-self-intersecting polygons."
/*!
ensures
- If you walk the points pts in order to make a closed polygon, what is its
area? This function returns that area. It uses the shoelace formula to
compute the result and so works for general non-self-intersecting polygons.
!*/
);
}