|
""" |
|
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) |
|
author: lzhbrian (https://lzhbrian.me) |
|
date: 2020.1.5 |
|
note: code is heavily borrowed from |
|
https://github.com/NVlabs/ffhq-dataset |
|
http://dlib.net/face_landmark_detection.py.html |
|
|
|
requirements: |
|
apt install cmake |
|
conda install Pillow numpy scipy |
|
pip install dlib |
|
# download face landmark model from: |
|
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 |
|
""" |
|
from argparse import ArgumentParser |
|
import time |
|
import numpy as np |
|
import PIL |
|
import PIL.Image |
|
import os |
|
import scipy |
|
import scipy.ndimage |
|
import dlib |
|
import multiprocessing as mp |
|
import math |
|
|
|
from configs.paths_config import model_paths |
|
SHAPE_PREDICTOR_PATH = model_paths["shape_predictor"] |
|
|
|
|
|
def get_landmark(filepath, predictor): |
|
"""get landmark with dlib |
|
:return: np.array shape=(68, 2) |
|
""" |
|
detector = dlib.get_frontal_face_detector() |
|
|
|
img = dlib.load_rgb_image(filepath) |
|
dets = detector(img, 1) |
|
|
|
shape = None |
|
|
|
for k, d in enumerate(dets): |
|
shape = predictor(img, d) |
|
|
|
if not shape: |
|
raise Exception("Could not find face in image. Try another!") |
|
|
|
t = list(shape.parts()) |
|
a = [] |
|
for tt in t: |
|
a.append([tt.x, tt.y]) |
|
lm = np.array(a) |
|
return lm |
|
|
|
|
|
def align_face(filepath, predictor): |
|
""" |
|
:param filepath: str |
|
:return: PIL Image |
|
""" |
|
|
|
lm = get_landmark(filepath, predictor) |
|
|
|
lm_chin = lm[0: 17] |
|
lm_eyebrow_left = lm[17: 22] |
|
lm_eyebrow_right = lm[22: 27] |
|
lm_nose = lm[27: 31] |
|
lm_nostrils = lm[31: 36] |
|
lm_eye_left = lm[36: 42] |
|
lm_eye_right = lm[42: 48] |
|
lm_mouth_outer = lm[48: 60] |
|
lm_mouth_inner = lm[60: 68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
img = PIL.Image.open(filepath).convert("RGB") |
|
|
|
output_size = 256 |
|
transform_size = 256 |
|
enable_padding = True |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, PIL.Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), |
|
min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), |
|
max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), |
|
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) |
|
blur = qsize * 0.02 |
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
quad += pad[:2] |
|
|
|
|
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
|
|
|
|
return img |
|
|
|
|
|
def chunks(lst, n): |
|
"""Yield successive n-sized chunks from lst.""" |
|
for i in range(0, len(lst), n): |
|
yield lst[i:i + n] |
|
|
|
|
|
def extract_on_paths(file_paths): |
|
predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH) |
|
pid = mp.current_process().name |
|
print(f'\t{pid} is starting to extract on #{len(file_paths)} images') |
|
tot_count = len(file_paths) |
|
count = 0 |
|
for file_path, res_path in file_paths: |
|
count += 1 |
|
if count % 100 == 0: |
|
print(f'{pid} done with {count}/{tot_count}') |
|
try: |
|
res = align_face(file_path, predictor) |
|
res = res.convert('RGB') |
|
os.makedirs(os.path.dirname(res_path), exist_ok=True) |
|
res.save(res_path) |
|
except Exception: |
|
continue |
|
print('\tDone!') |
|
|
|
|
|
def parse_args(): |
|
parser = ArgumentParser(add_help=False) |
|
parser.add_argument('--num_threads', type=int, default=1) |
|
parser.add_argument('--root_path', type=str, default='') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def run(args): |
|
root_path = args.root_path |
|
out_crops_path = root_path + '_crops' |
|
if not os.path.exists(out_crops_path): |
|
os.makedirs(out_crops_path, exist_ok=True) |
|
|
|
file_paths = [] |
|
for root, dirs, files in os.walk(root_path): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path)) |
|
res_path = f'{os.path.splitext(fname)[0]}.jpg' |
|
if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path): |
|
continue |
|
file_paths.append((file_path, res_path)) |
|
|
|
file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads)))) |
|
print(len(file_chunks)) |
|
pool = mp.Pool(args.num_threads) |
|
print(f'Running on {len(file_paths)} paths\nHere we goooo') |
|
tic = time.time() |
|
pool.map(extract_on_paths, file_chunks) |
|
toc = time.time() |
|
print(f'Mischief managed in {str(toc - tic)}s') |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
run(args) |
|
|