AshanGimhana
commited on
Commit
•
d373218
1
Parent(s):
19a2d28
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
|
4 |
os.system("pip install gradio==3.50")
|
5 |
-
|
6 |
-
|
7 |
from argparse import Namespace
|
8 |
import pprint
|
9 |
import numpy as np
|
@@ -11,7 +8,7 @@ from PIL import Image
|
|
11 |
import torch
|
12 |
import torchvision.transforms as transforms
|
13 |
import cv2
|
14 |
-
import
|
15 |
import matplotlib.pyplot as plt
|
16 |
import gradio as gr # Importing Gradio as gr
|
17 |
from tensorflow.keras.preprocessing.image import img_to_array
|
@@ -56,7 +53,7 @@ opts['checkpoint_path'] = model_path
|
|
56 |
opts = Namespace(**opts)
|
57 |
net = pSp(opts)
|
58 |
net.eval()
|
59 |
-
net.
|
60 |
|
61 |
print('Model successfully loaded!')
|
62 |
|
@@ -131,9 +128,9 @@ def apply_aging(image, target_age):
|
|
131 |
results = []
|
132 |
for age_transformer in age_transformers:
|
133 |
with torch.no_grad():
|
134 |
-
input_image_age = [age_transformer(input_image.cpu()).to('
|
135 |
input_image_age = torch.stack(input_image_age)
|
136 |
-
result_tensor = net(input_image_age.to("
|
137 |
result_image = tensor2im(result_tensor)
|
138 |
results.append(np.array(result_image))
|
139 |
final_result = results[0]
|
@@ -172,4 +169,4 @@ iface = gr.Interface(
|
|
172 |
description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
|
173 |
)
|
174 |
|
175 |
-
iface.launch(debug=True)
|
|
|
1 |
import os
|
2 |
import subprocess
|
|
|
3 |
os.system("pip install gradio==3.50")
|
|
|
|
|
4 |
from argparse import Namespace
|
5 |
import pprint
|
6 |
import numpy as np
|
|
|
8 |
import torch
|
9 |
import torchvision.transforms as transforms
|
10 |
import cv2
|
11 |
+
import dlib
|
12 |
import matplotlib.pyplot as plt
|
13 |
import gradio as gr # Importing Gradio as gr
|
14 |
from tensorflow.keras.preprocessing.image import img_to_array
|
|
|
53 |
opts = Namespace(**opts)
|
54 |
net = pSp(opts)
|
55 |
net.eval()
|
56 |
+
net.cpu() # Set the model to run on CPU
|
57 |
|
58 |
print('Model successfully loaded!')
|
59 |
|
|
|
128 |
results = []
|
129 |
for age_transformer in age_transformers:
|
130 |
with torch.no_grad():
|
131 |
+
input_image_age = [age_transformer(input_image.cpu()).to('cpu')]
|
132 |
input_image_age = torch.stack(input_image_age)
|
133 |
+
result_tensor = net(input_image_age.to("cpu").float(), randomize_noise=False, resize=False)[0]
|
134 |
result_image = tensor2im(result_tensor)
|
135 |
results.append(np.array(result_image))
|
136 |
final_result = results[0]
|
|
|
169 |
description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
|
170 |
)
|
171 |
|
172 |
+
iface.launch(debug=True)
|