// Copyright (C) 2009 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_MATRIx_LA_FUNCTS_ #define DLIB_MATRIx_LA_FUNCTS_ #include "matrix_la_abstract.h" #include "matrix_utilities.h" #include "../sparse_vector.h" #include "../optimization/optimization_line_search.h" // The 4 decomposition objects described in the matrix_la_abstract.h file are // actually implemented in the following 4 files. #include "matrix_lu.h" #include "matrix_qr.h" #include "matrix_cholesky.h" #include "matrix_eigenvalue.h" #ifdef DLIB_USE_LAPACK #include "lapack/potrf.h" #include "lapack/pbtrf.h" #include "lapack/gesdd.h" #include "lapack/gesvd.h" #endif #include "../threads.h" #include <iostream> namespace dlib { // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- enum svd_u_mode { SVD_NO_U, SVD_SKINNY_U, SVD_FULL_U }; template < typename EXP, long qN, long qX, long uM, long uN, long vM, long vN, typename MM1, typename MM2, typename MM3, typename L1 > long svd4 ( svd_u_mode u_mode, bool withv, const matrix_exp<EXP>& a, matrix<typename EXP::type,uM,uN,MM1,L1>& u, matrix<typename EXP::type,qN,qX,MM2,L1>& q, matrix<typename EXP::type,vM,vN,MM3,L1>& v ) { /* Singular value decomposition. Translated to 'C' from the original Algol code in "Handbook for Automatic Computation, vol. II, Linear Algebra", Springer-Verlag. Note that this published algorithm is considered to be the best and numerically stable approach to computing the real-valued svd and is referenced repeatedly in ieee journal papers, etc where the svd is used. This is almost an exact translation from the original, except that an iteration counter is added to prevent stalls. This corresponds to similar changes in other translations. Returns an error code = 0, if no errors and 'k' if a failure to converge at the 'kth' singular value. USAGE: given the singular value decomposition a = u * diagm(q) * trans(v) for an m*n matrix a with m >= n ... After the svd call u is an m x m matrix which is columnwise orthogonal. q will be an n element vector consisting of singular values and v an n x n orthogonal matrix. eps and tol are tolerance constants. Suitable values are eps=1e-16 and tol=(1e-300)/eps if T == double. If u_mode == SVD_NO_U then u won't be computed and similarly if withv == false then v won't be computed. If u_mode == SVD_SKINNY_U then u will be m x n instead of m x m. */ DLIB_ASSERT(a.nr() >= a.nc(), "\tconst matrix_exp svd4()" << "\n\tYou have given an invalidly sized matrix" << "\n\ta.nr(): " << a.nr() << "\n\ta.nc(): " << a.nc() ); typedef typename EXP::type T; #ifdef DLIB_USE_LAPACK matrix<typename EXP::type,0,0,MM1,L1> temp(a), vtemp; char jobu = 'A'; char jobvt = 'A'; if (u_mode == SVD_NO_U) jobu = 'N'; else if (u_mode == SVD_SKINNY_U) jobu = 'S'; if (withv == false) jobvt = 'N'; int info; if (jobu == jobvt) { info = lapack::gesdd(jobu, temp, q, u, vtemp); } else { info = lapack::gesvd(jobu, jobvt, temp, q, u, vtemp); } // pad q with zeros if it isn't the length we want if (q.nr() < a.nc()) q = join_cols(q, zeros_matrix<T>(a.nc()-q.nr(),1)); if (withv) v = trans(vtemp); return info; #else using std::abs; using std::sqrt; T eps = std::numeric_limits<T>::epsilon(); T tol = std::numeric_limits<T>::min()/eps; const long m = a.nr(); const long n = a.nc(); long i, j, k, l = 0, l1, iter, retval; T c, f, g, h, s, x, y, z; matrix<T,qN,1,MM2> e(n,1); q.set_size(n,1); if (u_mode == SVD_FULL_U) u.set_size(m,m); else u.set_size(m,n); retval = 0; if (withv) { v.set_size(n,n); } /* Copy 'a' to 'u' */ for (i=0; i<m; i++) { for (j=0; j<n; j++) u(i,j) = a(i,j); } /* Householder's reduction to bidiagonal form. */ g = x = 0.0; for (i=0; i<n; i++) { e(i) = g; s = 0.0; l = i + 1; for (j=i; j<m; j++) s += (u(j,i) * u(j,i)); if (s < tol) g = 0.0; else { f = u(i,i); g = (f < 0) ? sqrt(s) : -sqrt(s); h = f * g - s; u(i,i) = f - g; for (j=l; j<n; j++) { s = 0.0; for (k=i; k<m; k++) s += (u(k,i) * u(k,j)); f = s / h; for (k=i; k<m; k++) u(k,j) += (f * u(k,i)); } /* end j */ } /* end s */ q(i) = g; s = 0.0; for (j=l; j<n; j++) s += (u(i,j) * u(i,j)); if (s < tol) g = 0.0; else { f = u(i,i+1); g = (f < 0) ? sqrt(s) : -sqrt(s); h = f * g - s; u(i,i+1) = f - g; for (j=l; j<n; j++) e(j) = u(i,j) / h; for (j=l; j<m; j++) { s = 0.0; for (k=l; k<n; k++) s += (u(j,k) * u(i,k)); for (k=l; k<n; k++) u(j,k) += (s * e(k)); } /* end j */ } /* end s */ y = abs(q(i)) + abs(e(i)); if (y > x) x = y; } /* end i */ /* accumulation of right-hand transformations */ if (withv) { for (i=n-1; i>=0; i--) { if (g != 0.0) { h = u(i,i+1) * g; for (j=l; j<n; j++) v(j,i) = u(i,j)/h; for (j=l; j<n; j++) { s = 0.0; for (k=l; k<n; k++) s += (u(i,k) * v(k,j)); for (k=l; k<n; k++) v(k,j) += (s * v(k,i)); } /* end j */ } /* end g */ for (j=l; j<n; j++) v(i,j) = v(j,i) = 0.0; v(i,i) = 1.0; g = e(i); l = i; } /* end i */ } /* end withv, parens added for clarity */ /* accumulation of left-hand transformations */ if (u_mode != SVD_NO_U) { for (i=n; i<u.nr(); i++) { for (j=n;j<u.nc();j++) u(i,j) = 0.0; if (i < u.nc()) u(i,i) = 1.0; } } if (u_mode != SVD_NO_U) { for (i=n-1; i>=0; i--) { l = i + 1; g = q(i); for (j=l; j<u.nc(); j++) u(i,j) = 0.0; if (g != 0.0) { h = u(i,i) * g; for (j=l; j<u.nc(); j++) { s = 0.0; for (k=l; k<m; k++) s += (u(k,i) * u(k,j)); f = s / h; for (k=i; k<m; k++) u(k,j) += (f * u(k,i)); } /* end j */ for (j=i; j<m; j++) u(j,i) /= g; } /* end g */ else { for (j=i; j<m; j++) u(j,i) = 0.0; } u(i,i) += 1.0; } /* end i*/ } /* diagonalization of the bidiagonal form */ eps *= x; for (k=n-1; k>=0; k--) { iter = 0; test_f_splitting: for (l=k; l>=0; l--) { if (abs(e(l)) <= eps) goto test_f_convergence; if (abs(q(l-1)) <= eps) goto cancellation; } /* end l */ /* cancellation of e(l) if l > 0 */ cancellation: c = 0.0; s = 1.0; l1 = l - 1; for (i=l; i<=k; i++) { f = s * e(i); e(i) *= c; if (abs(f) <= eps) goto test_f_convergence; g = q(i); h = q(i) = sqrt(f*f + g*g); c = g / h; s = -f / h; if (u_mode != SVD_NO_U) { for (j=0; j<m; j++) { y = u(j,l1); z = u(j,i); u(j,l1) = y * c + z * s; u(j,i) = -y * s + z * c; } /* end j */ } } /* end i */ test_f_convergence: z = q(k); if (l == k) goto convergence; /* shift from bottom 2x2 minor */ iter++; if (iter > 300) { retval = k; break; } x = q(l); y = q(k-1); g = e(k-1); h = e(k); f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2 * h * y); g = sqrt(f * f + 1.0); f = ((x - z) * (x + z) + h * (y / ((f < 0)?(f - g) : (f + g)) - h)) / x; /* next QR transformation */ c = s = 1.0; for (i=l+1; i<=k; i++) { g = e(i); y = q(i); h = s * g; g *= c; e(i-1) = z = sqrt(f * f + h * h); c = f / z; s = h / z; f = x * c + g * s; g = -x * s + g * c; h = y * s; y *= c; if (withv) { for (j=0;j<n;j++) { x = v(j,i-1); z = v(j,i); v(j,i-1) = x * c + z * s; v(j,i) = -x * s + z * c; } /* end j */ } /* end withv, parens added for clarity */ q(i-1) = z = sqrt(f * f + h * h); if (z != 0) { c = f / z; s = h / z; } f = c * g + s * y; x = -s * g + c * y; if (u_mode != SVD_NO_U) { for (j=0; j<m; j++) { y = u(j,i-1); z = u(j,i); u(j,i-1) = y * c + z * s; u(j,i) = -y * s + z * c; } /* end j */ } } /* end i */ e(l) = 0.0; e(k) = f; q(k) = x; goto test_f_splitting; convergence: if (z < 0.0) { /* q(k) is made non-negative */ q(k) = -z; if (withv) { for (j=0; j<n; j++) v(j,k) = -v(j,k); } /* end withv, parens added for clarity */ } /* end z */ } /* end k */ return retval; #endif } // ---------------------------------------------------------------------------------------- template < typename EXP, long qN, long qX, long uM, long vN, typename MM1, typename MM2, typename MM3, typename L1 > long svd2 ( bool withu, bool withv, const matrix_exp<EXP>& a, matrix<typename EXP::type,uM,uM,MM1,L1>& u, matrix<typename EXP::type,qN,qX,MM2,L1>& q, matrix<typename EXP::type,vN,vN,MM3,L1>& v ) { const long NR = matrix_exp<EXP>::NR; const long NC = matrix_exp<EXP>::NC; // make sure the output matrices have valid dimensions if they are statically dimensioned COMPILE_TIME_ASSERT(qX == 0 || qX == 1); COMPILE_TIME_ASSERT(NR == 0 || uM == 0 || NR == uM); COMPILE_TIME_ASSERT(NC == 0 || vN == 0 || NC == vN); DLIB_ASSERT(a.nr() >= a.nc(), "\tconst matrix_exp svd4()" << "\n\tYou have given an invalidly sized matrix" << "\n\ta.nr(): " << a.nr() << "\n\ta.nc(): " << a.nc() ); if (withu) return svd4(SVD_FULL_U, withv, a,u,q,v); else return svd4(SVD_NO_U, withv, a,u,q,v); } // ---------------------------------------------------------------------------------------- template < typename T, long NR, long NC, typename MM > void orthogonalize ( matrix<T,NR,NC,MM,row_major_layout>& m ) { // We don't really need to use this temporary, but doing it this way runs a lot // faster. matrix<T,NR,NC,MM,column_major_layout> temp; qr_decomposition<matrix<T,NR,NC,MM,row_major_layout>>(m).get_q(temp); m = temp; } template < typename T, long NR, long NC, typename MM > void orthogonalize ( matrix<T,NR,NC,MM,column_major_layout>& m ) { qr_decomposition<matrix<T,NR,NC,MM,column_major_layout>>(m).get_q(m); } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename T, long Anr, long Anc, typename MM, typename L > void find_matrix_range ( const matrix<T,Anr,Anc,MM,L>& A, unsigned long l, matrix<T,Anr,0,MM,L>& Q, unsigned long q ) /*! requires - A.nr() >= l ensures - #Q.nr() == A.nr() - #Q.nc() == l - #Q == an orthonormal matrix whose range approximates the range of the matrix A. - This function implements the randomized subspace iteration defined in the algorithm 4.4 box of the paper: Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions by Halko et al. - q defines the number of extra subspace iterations this algorithm will perform. Often q == 0 is fine, but performing more iterations can lead to a more accurate approximation of the range of A if A has slowly decaying singular values. In these cases, using a q of 1 or 2 is good. !*/ { DLIB_ASSERT(A.nr() >= (long)l, "Invalid inputs were given to this function."); Q = A*matrix_cast<T>(gaussian_randm(A.nc(), l)); orthogonalize(Q); // Do some extra iterations of the power method to make sure we get Q into the // span of the most important singular vectors of A. if (q != 0) { for (unsigned long itr = 0; itr < q; ++itr) { Q = trans(A)*Q; orthogonalize(Q); Q = A*Q; orthogonalize(Q); } } } // ---------------------------------------------------------------------------------------- template < typename T, long Anr, long Anc, long Unr, long Unc, long Wnr, long Wnc, long Vnr, long Vnc, typename MM, typename L > void svd_fast ( const matrix<T,Anr,Anc,MM,L>& A, matrix<T,Unr,Unc,MM,L>& u, matrix<T,Wnr,Wnc,MM,L>& w, matrix<T,Vnr,Vnc,MM,L>& v, unsigned long l, unsigned long q = 1 ) { const unsigned long k = std::min(l, std::min<unsigned long>(A.nr(),A.nc())); DLIB_ASSERT(l > 0 && A.size() > 0, "\t void svd_fast()" << "\n\t Invalid inputs were given to this function." << "\n\t l: " << l << "\n\t A.size(): " << A.size() ); matrix<T,Anr,0,MM,L> Q; find_matrix_range(A, k, Q, q); // Compute trans(B) = trans(Q)*A. The reason we store B transposed // is so that when we take its SVD later using svd3() it doesn't consume // a whole lot of RAM. That is, we make sure the square matrix coming out // of svd3() has size lxl rather than the potentially much larger nxn. matrix<T,0,0,MM,L> B = trans(A)*Q; svd3(B, v,w,u); u = Q*u; } // ---------------------------------------------------------------------------------------- template < typename sparse_vector_type, typename T, typename MM, typename L > void find_matrix_range ( const std::vector<sparse_vector_type>& A, unsigned long l, matrix<T,0,0,MM,L>& Q, unsigned long q ) /*! requires - A.size() >= l ensures - #Q.nr() == A.size() - #Q.nc() == l - #Q == an orthonormal matrix whose range approximates the range of the matrix A. In this case, we interpret A as a matrix of A.size() rows, where each row is defined by a sparse vector. - This function implements the randomized subspace iteration defined in the algorithm 4.4 box of the paper: Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions by Halko et al. - q defines the number of extra subspace iterations this algorithm will perform. Often q == 0 is fine, but performing more iterations can lead to a more accurate approximation of the range of A if A has slowly decaying singular values. In these cases, using a q of 1 or 2 is good. !*/ { DLIB_ASSERT(A.size() >= l, "Invalid inputs were given to this function."); Q.set_size(A.size(), l); // Compute Q = A*gaussian_randm() parallel_for(0, Q.nr(), [&](long r) { for (long c = 0; c < Q.nc(); ++c) { Q(r,c) = dot(A[r], gaussian_randm(std::numeric_limits<long>::max(), 1, c)); } }); orthogonalize(Q); // Do some extra iterations of the power method to make sure we get Q into the // span of the most important singular vectors of A. if (q != 0) { dlib::mutex mut; const unsigned long n = max_index_plus_one(A); for (unsigned long itr = 0; itr < q; ++itr) { matrix<T,0,0,MM> Z; // Compute Z = trans(A)*Q parallel_for_blocked(0, A.size(), [&](long begin, long end) { matrix<T,0,0,MM> Zlocal(n,l); Zlocal = 0; for (long m = begin; m < end; ++m) { for (unsigned long r = 0; r < l; ++r) { for (auto& i : A[m]) { const auto c = i.first; const auto val = i.second; Zlocal(c,r) += Q(m,r)*val; } } } auto_mutex lock(mut); Z += Zlocal; },1); Q.set_size(0,0); // free RAM orthogonalize(Z); // Compute Q = A*Z Q.set_size(A.size(), l); parallel_for(0, Q.nr(), [&](long r) { for (long c = 0; c < Q.nc(); ++c) { Q(r,c) = dot(A[r], colm(Z,c)); } }); Z.set_size(0,0); // free RAM orthogonalize(Q); } } } // ---------------------------------------------------------------------------------------- namespace simpl { template < typename sparse_vector_type, typename T, long Unr, long Unc, long Wnr, long Wnc, long Vnr, long Vnc, typename MM, typename L > void svd_fast ( bool compute_u, const std::vector<sparse_vector_type>& A, matrix<T,Unr,Unc,MM,L>& u, matrix<T,Wnr,Wnc,MM,L>& w, matrix<T,Vnr,Vnc,MM,L>& v, unsigned long l, unsigned long q ) { const long n = max_index_plus_one(A); const unsigned long k = std::min(l, std::min<unsigned long>(A.size(),n)); DLIB_ASSERT(l > 0 && A.size() > 0 && n > 0, "\t void svd_fast()" << "\n\t Invalid inputs were given to this function." << "\n\t l: " << l << "\n\t n (i.e. max_index_plus_one(A)): " << n << "\n\t A.size(): " << A.size() ); matrix<T,0,0,MM,L> Q; find_matrix_range(A, k, Q, q); // Compute trans(B) = trans(Q)*A. The reason we store B transposed // is so that when we take its SVD later using svd3() it doesn't consume // a whole lot of RAM. That is, we make sure the square matrix coming out // of svd3() has size lxl rather than the potentially much larger nxn. matrix<T,0,0,MM> B; dlib::mutex mut; parallel_for_blocked(0, A.size(), [&](long begin, long end) { matrix<T,0,0,MM> Blocal(n,k); Blocal = 0; for (long m = begin; m < end; ++m) { for (unsigned long r = 0; r < k; ++r) { for (auto& i : A[m]) { const auto c = i.first; const auto val = i.second; Blocal(c,r) += Q(m,r)*val; } } } auto_mutex lock(mut); B += Blocal; },1); svd3(B, v,w,u); if (compute_u) u = Q*u; } } template < typename sparse_vector_type, typename T, long Unr, long Unc, long Wnr, long Wnc, long Vnr, long Vnc, typename MM, typename L > void svd_fast ( const std::vector<sparse_vector_type>& A, matrix<T,Unr,Unc,MM,L>& u, matrix<T,Wnr,Wnc,MM,L>& w, matrix<T,Vnr,Vnc,MM,L>& v, unsigned long l, unsigned long q = 1 ) { simpl::svd_fast(true, A,u,w,v,l,q); } template < typename sparse_vector_type, typename T, long Wnr, long Wnc, long Vnr, long Vnc, typename MM, typename L > void svd_fast ( const std::vector<sparse_vector_type>& A, matrix<T,Wnr,Wnc,MM,L>& w, matrix<T,Vnr,Vnc,MM,L>& v, unsigned long l, unsigned long q = 1 ) { matrix<T,0,0,MM,L> u; simpl::svd_fast(false, A,u,w,v,l,q); } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename EXP, long N > struct inv_helper { static const typename matrix_exp<EXP>::matrix_type inv ( const matrix_exp<EXP>& m ) { // you can't invert a non-square matrix COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC || matrix_exp<EXP>::NR == 0 || matrix_exp<EXP>::NC == 0); DLIB_ASSERT(m.nr() == m.nc(), "\tconst matrix_exp::type inv(const matrix_exp& m)" << "\n\tYou can only apply inv() to a square matrix" << "\n\tm.nr(): " << m.nr() << "\n\tm.nc(): " << m.nc() ); typedef typename matrix_exp<EXP>::type type; lu_decomposition<EXP> lu(m); return lu.solve(identity_matrix<type>(m.nr())); } }; template < typename EXP > struct inv_helper<EXP,1> { static const typename matrix_exp<EXP>::matrix_type inv ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); typedef typename matrix_exp<EXP>::type type; matrix<type, 1, 1, typename EXP::mem_manager_type> a; // if m is invertible if (m(0) != 0) a(0) = 1/m(0); else a(0) = 1; return a; } }; template < typename EXP > struct inv_helper<EXP,2> { static const typename matrix_exp<EXP>::matrix_type inv ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); typedef typename matrix_exp<EXP>::type type; matrix<type, 2, 2, typename EXP::mem_manager_type> a; type d = det(m); if (d != 0) { d = static_cast<type>(1.0/d); a(0,0) = m(1,1)*d; a(0,1) = m(0,1)*-d; a(1,0) = m(1,0)*-d; a(1,1) = m(0,0)*d; } else { // Matrix isn't invertible so just return the identity matrix. a = identity_matrix<type,2>(); } return a; } }; template < typename EXP > struct inv_helper<EXP,3> { static const typename matrix_exp<EXP>::matrix_type inv ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); typedef typename matrix_exp<EXP>::type type; matrix<type, 3, 3, typename EXP::mem_manager_type> ret; type de = det(m); if (de != 0) { de = static_cast<type>(1.0/de); const type a = m(0,0); const type b = m(0,1); const type c = m(0,2); const type d = m(1,0); const type e = m(1,1); const type f = m(1,2); const type g = m(2,0); const type h = m(2,1); const type i = m(2,2); ret(0,0) = (e*i - f*h)*de; ret(1,0) = (f*g - d*i)*de; ret(2,0) = (d*h - e*g)*de; ret(0,1) = (c*h - b*i)*de; ret(1,1) = (a*i - c*g)*de; ret(2,1) = (b*g - a*h)*de; ret(0,2) = (b*f - c*e)*de; ret(1,2) = (c*d - a*f)*de; ret(2,2) = (a*e - b*d)*de; } else { ret = identity_matrix<type,3>(); } return ret; } }; template < typename EXP > struct inv_helper<EXP,4> { static const typename matrix_exp<EXP>::matrix_type inv ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); typedef typename matrix_exp<EXP>::type type; matrix<type, 4, 4, typename EXP::mem_manager_type> ret; type de = det(m); if (de != 0) { de = static_cast<type>(1.0/de); ret(0,0) = det(removerc<0,0>(m)); ret(0,1) = -det(removerc<0,1>(m)); ret(0,2) = det(removerc<0,2>(m)); ret(0,3) = -det(removerc<0,3>(m)); ret(1,0) = -det(removerc<1,0>(m)); ret(1,1) = det(removerc<1,1>(m)); ret(1,2) = -det(removerc<1,2>(m)); ret(1,3) = det(removerc<1,3>(m)); ret(2,0) = det(removerc<2,0>(m)); ret(2,1) = -det(removerc<2,1>(m)); ret(2,2) = det(removerc<2,2>(m)); ret(2,3) = -det(removerc<2,3>(m)); ret(3,0) = -det(removerc<3,0>(m)); ret(3,1) = det(removerc<3,1>(m)); ret(3,2) = -det(removerc<3,2>(m)); ret(3,3) = det(removerc<3,3>(m)); return trans(ret)*de; } else { return identity_matrix<type,4>(); } } }; template < typename EXP > inline const typename matrix_exp<EXP>::matrix_type inv ( const matrix_exp<EXP>& m ) { return inv_helper<EXP,matrix_exp<EXP>::NR>::inv(m); } // ---------------------------------------------------------------------------------------- template <typename M> struct op_diag_inv { template <typename EXP> op_diag_inv( const matrix_exp<EXP>& m_) : m(m_){} const static long cost = 1; const static long NR = ((M::NC!=0)&&(M::NR!=0))? (tmax<M::NR,M::NC>::value) : (0); const static long NC = NR; typedef typename M::type type; typedef const type const_ret_type; typedef typename M::mem_manager_type mem_manager_type; typedef typename M::layout_type layout_type; // hold the matrix by value const matrix<type,NR,1,mem_manager_type,layout_type> m; const_ret_type apply ( long r, long c) const { if (r==c) return m(r); else return 0; } long nr () const { return m.size(); } long nc () const { return m.size(); } template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); } template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); } }; template < typename EXP > const matrix_diag_op<op_diag_inv<EXP> > inv ( const matrix_diag_exp<EXP>& m ) { typedef op_diag_inv<EXP> op; return matrix_diag_op<op>(op(reciprocal(diag(m)))); } template < typename EXP > const matrix_diag_op<op_diag_inv<EXP> > pinv ( const matrix_diag_exp<EXP>& m ) { typedef op_diag_inv<EXP> op; return matrix_diag_op<op>(op(reciprocal(diag(m)))); } // ---------------------------------------------------------------------------------------- template < typename EXP > const matrix_diag_op<op_diag_inv<EXP> > pinv ( const matrix_diag_exp<EXP>& m, double tol ) { DLIB_ASSERT(tol >= 0, "\tconst matrix_exp::type pinv(const matrix_exp& m)" << "\n\t tol can't be negative" << "\n\t tol: "<<tol ); typedef op_diag_inv<EXP> op; return matrix_diag_op<op>(op(reciprocal(round_zeros(diag(m),tol)))); } // ---------------------------------------------------------------------------------------- template <typename EXP> const typename matrix_exp<EXP>::matrix_type inv_lower_triangular ( const matrix_exp<EXP>& A ) { DLIB_ASSERT(A.nr() == A.nc(), "\tconst matrix inv_lower_triangular(const matrix_exp& A)" << "\n\tA must be a square matrix" << "\n\tA.nr(): " << A.nr() << "\n\tA.nc(): " << A.nc() ); typedef typename matrix_exp<EXP>::matrix_type matrix_type; matrix_type m(A); for(long c = 0; c < m.nc(); ++c) { if( m(c,c) == 0 ) { // there isn't an inverse so just give up return m; } // compute m(c,c) m(c,c) = 1/m(c,c); // compute the values in column c that are below m(c,c). // We do this by just doing the same thing we do for upper triangular // matrices because we take the transpose of m which turns m into an // upper triangular matrix. for(long r = 0; r < c; ++r) { const long n = c-r; m(c,r) = -m(c,c)*subm(trans(m),r,r,1,n)*subm(trans(m),r,c,n,1); } } return m; } // ---------------------------------------------------------------------------------------- template <typename EXP> const typename matrix_exp<EXP>::matrix_type inv_upper_triangular ( const matrix_exp<EXP>& A ) { DLIB_ASSERT(A.nr() == A.nc(), "\tconst matrix inv_upper_triangular(const matrix_exp& A)" << "\n\tA must be a square matrix" << "\n\tA.nr(): " << A.nr() << "\n\tA.nc(): " << A.nc() ); typedef typename matrix_exp<EXP>::matrix_type matrix_type; matrix_type m(A); for(long c = 0; c < m.nc(); ++c) { if( m(c,c) == 0 ) { // there isn't an inverse so just give up return m; } // compute m(c,c) m(c,c) = 1/m(c,c); // compute the values in column c that are above m(c,c) for(long r = 0; r < c; ++r) { const long n = c-r; m(r,c) = -m(c,c)*subm(m,r,r,1,n)*subm(m,r,c,n,1); } } return m; } // ---------------------------------------------------------------------------------------- template < typename EXP > inline const typename matrix_exp<EXP>::matrix_type chol ( const matrix_exp<EXP>& A ) { DLIB_ASSERT(A.nr() == A.nc(), "\tconst matrix chol(const matrix_exp& A)" << "\n\tYou can only apply the chol to a square matrix" << "\n\tA.nr(): " << A.nr() << "\n\tA.nc(): " << A.nc() ); typename matrix_exp<EXP>::matrix_type L(A.nr(),A.nc()); typedef typename EXP::type T; bool banded = false; long bandwidth = 0; if (A.nr() > 4) // Only test for banded matrix if matrix is big enough { // Detect if matrix is banded and, if so, matrix bandwidth banded = true; for (long r = 0; r < A.nr(); ++r) for (long c = (r + bandwidth + 1); c < A.nc(); ++c) if (A(r, c) != 0) { bandwidth = c - r; if (bandwidth > A.nr() / 2) { banded = false; goto escape_banded_detection; } } } escape_banded_detection: if (banded) { // Store in compact form - use column major for LAPACK matrix<T,0,0,default_memory_manager,column_major_layout> B(bandwidth + 1, A.nc()); set_all_elements(B, 0); for (long r = 0; r < A.nr(); ++r) for (long c = r; c < std::min(r + bandwidth + 1, A.nc()); ++c) B(c - r, r) = A(r, c); #ifdef DLIB_USE_LAPACK lapack::pbtrf('L', B); #else // Perform compact Cholesky for (long k = 0; k < A.nr(); ++k) { long last = std::min(k + bandwidth, A.nr() - 1) - k; for (long j = 1; j <= last; ++j) { long i = k + j; for (long c = 0; c <= (last - j); ++c) B(c, i) -= B(j, k) / B(0, k) * B(c + j, k); } T norm = std::sqrt(B(0, k)); for (long i = 0; i <= bandwidth; ++i) B(i, k) /= norm; } for (long c = A.nc() - bandwidth + 1; c < A.nc(); ++c) B(bandwidth, c) = 0; #endif // Unpack lower triangular area set_all_elements(L, 0); for (long c = 0; c < A.nc(); ++c) for (long i = 0; i <= bandwidth; ++i) { long ind = c + i; if (ind < A.nc()) L(ind, c) = B(i, c); } return L; } #ifdef DLIB_USE_LAPACK // Only call LAPACK if the matrix is big enough. Otherwise, // our own code is faster, especially for statically dimensioned // matrices. if (A.nr() > 4) { L = A; lapack::potrf('L', L); // mask out upper triangular area return lowerm(L); } #endif set_all_elements(L,0); // do nothing if the matrix is empty if (A.size() == 0) return L; const T eps = std::numeric_limits<T>::epsilon(); // compute the upper left corner if (A(0,0) > 0) L(0,0) = std::sqrt(A(0,0)); // compute the first column for (long r = 1; r < A.nr(); ++r) { // if (L(0,0) > 0) if (L(0,0) > eps*std::abs(A(r,0))) L(r,0) = A(r,0)/L(0,0); else return L; } // now compute all the other columns for (long c = 1; c < A.nc(); ++c) { // compute the diagonal element T temp = A(c,c); for (long i = 0; i < c; ++i) { temp -= L(c,i)*L(c,i); } if (temp > 0) L(c,c) = std::sqrt(temp); // compute the non diagonal elements for (long r = c+1; r < A.nr(); ++r) { temp = A(r,c); for (long i = 0; i < c; ++i) { temp -= L(r,i)*L(c,i); } // if (L(c,c) > 0) if (L(c,c) > eps*std::abs(temp)) L(r,c) = temp/L(c,c); else return L; } } return L; } // ---------------------------------------------------------------------------------------- template < typename EXP, long uNR, long uNC, long wN, long vN, long wX, typename MM1, typename MM2, typename MM3, typename L1 > inline void svd3 ( const matrix_exp<EXP>& m, matrix<typename matrix_exp<EXP>::type, uNR, uNC,MM1,L1>& u, matrix<typename matrix_exp<EXP>::type, wN, wX,MM2,L1>& w, matrix<typename matrix_exp<EXP>::type, vN, vN,MM3,L1>& v ) { typedef typename matrix_exp<EXP>::type T; const long NR = matrix_exp<EXP>::NR; const long NC = matrix_exp<EXP>::NC; // make sure the output matrices have valid dimensions if they are statically dimensioned COMPILE_TIME_ASSERT(NR == 0 || uNR == 0 || NR == uNR); COMPILE_TIME_ASSERT(NC == 0 || uNC == 0 || NC == uNC); COMPILE_TIME_ASSERT(NC == 0 || wN == 0 || NC == wN); COMPILE_TIME_ASSERT(NC == 0 || vN == 0 || NC == vN); COMPILE_TIME_ASSERT(wX == 0 || wX == 1); #ifdef DLIB_USE_LAPACK // use LAPACK but only if it isn't a really small matrix we are taking the SVD of. if (NR*NC == 0 || NR*NC > 3*3) { matrix<typename matrix_exp<EXP>::type, uNR, uNC,MM1,L1> temp(m); lapack::gesvd('S','A', temp, w, u, v); v = trans(v); // if u isn't the size we want then pad it (and v) with zeros if (u.nc() < m.nc()) { w = join_cols(w, zeros_matrix<T>(m.nc()-u.nc(),1)); u = join_rows(u, zeros_matrix<T>(u.nr(), m.nc()-u.nc())); } return; } #endif if (m.nr() >= m.nc()) { svd4(SVD_SKINNY_U,true, m, u,w,v); } else { svd4(SVD_FULL_U,true, trans(m), v,w,u); // if u isn't the size we want then pad it (and v) with zeros if (u.nc() < m.nc()) { w = join_cols(w, zeros_matrix<T>(m.nc()-u.nc(),1)); u = join_rows(u, zeros_matrix<T>(u.nr(), m.nc()-u.nc())); } } } // ---------------------------------------------------------------------------------------- template < typename EXP > const matrix<typename EXP::type,EXP::NC,EXP::NR,typename EXP::mem_manager_type> pinv_helper ( const matrix_exp<EXP>& m, double tol ) /*! ensures - computes the results of pinv(m) but does so using a method that is fastest when m.nc() <= m.nr(). So if m.nc() > m.nr() then it is best to use trans(pinv_helper(trans(m))) to compute pinv(m). !*/ { typename matrix_exp<EXP>::matrix_type u; typedef typename EXP::mem_manager_type MM1; typedef typename EXP::layout_type layout_type; matrix<typename EXP::type, EXP::NC, EXP::NC,MM1, layout_type > v; typedef typename matrix_exp<EXP>::type T; matrix<T,matrix_exp<EXP>::NC,1,MM1, layout_type> w; svd3(m, u,w,v); const double machine_eps = std::numeric_limits<typename EXP::type>::epsilon(); // compute a reasonable epsilon below which we round to zero before doing the // reciprocal. Unless a non-zero tol is given then we just use tol*max(w). const double eps = (tol!=0) ? tol*max(w) : machine_eps*std::max(m.nr(),m.nc())*max(w); // now compute the pseudoinverse return tmp(scale_columns(v,reciprocal(round_zeros(w,eps))))*trans(u); } template < typename EXP > const matrix<typename EXP::type,EXP::NC,EXP::NR,typename EXP::mem_manager_type> pinv ( const matrix_exp<EXP>& m, double tol = 0 ) { DLIB_ASSERT(tol >= 0, "\tconst matrix_exp::type pinv(const matrix_exp& m)" << "\n\t tol can't be negative" << "\n\t tol: "<<tol ); // if m has more columns then rows then it is more efficient to // compute the pseudo-inverse of its transpose (given the way I'm doing it below). if (m.nc() > m.nr()) return trans(pinv_helper(trans(m),tol)); else return pinv_helper(m,tol); } // ---------------------------------------------------------------------------------------- template < typename EXP, long uNR, long uNC, long wN, long vN, typename MM1, typename MM2, typename MM3, typename L1 > inline void svd ( const matrix_exp<EXP>& m, matrix<typename matrix_exp<EXP>::type, uNR, uNC,MM1,L1>& u, matrix<typename matrix_exp<EXP>::type, wN, wN,MM2,L1>& w, matrix<typename matrix_exp<EXP>::type, vN, vN,MM3,L1>& v ) { typedef typename matrix_exp<EXP>::type T; const long NR = matrix_exp<EXP>::NR; const long NC = matrix_exp<EXP>::NC; // make sure the output matrices have valid dimensions if they are statically dimensioned COMPILE_TIME_ASSERT(NR == 0 || uNR == 0 || NR == uNR); COMPILE_TIME_ASSERT(NC == 0 || uNC == 0 || NC == uNC); COMPILE_TIME_ASSERT(NC == 0 || wN == 0 || NC == wN); COMPILE_TIME_ASSERT(NC == 0 || vN == 0 || NC == vN); matrix<T,matrix_exp<EXP>::NC,1,MM1, L1> W; svd3(m,u,W,v); w = diagm(W); } // ---------------------------------------------------------------------------------------- template < typename EXP > const typename matrix_exp<EXP>::type trace ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC || matrix_exp<EXP>::NR == 0 || matrix_exp<EXP>::NC == 0 ); DLIB_ASSERT(m.nr() == m.nc(), "\tconst matrix_exp::type trace(const matrix_exp& m)" << "\n\tYou can only apply trace() to a square matrix" << "\n\tm.nr(): " << m.nr() << "\n\tm.nc(): " << m.nc() ); return sum(diag(m)); } // ---------------------------------------------------------------------------------------- template < typename EXP, long N = EXP::NR > struct det_helper { static const typename matrix_exp<EXP>::type det ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC || matrix_exp<EXP>::NR == 0 || matrix_exp<EXP>::NC == 0 ); DLIB_ASSERT(m.nr() == m.nc(), "\tconst matrix_exp::type det(const matrix_exp& m)" << "\n\tYou can only apply det() to a square matrix" << "\n\tm.nr(): " << m.nr() << "\n\tm.nc(): " << m.nc() ); return lu_decomposition<EXP>(m).det(); } }; template < typename EXP > struct det_helper<EXP,1> { static const typename matrix_exp<EXP>::type det ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); return m(0); } }; template < typename EXP > struct det_helper<EXP,2> { static const typename matrix_exp<EXP>::type det ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); return m(0,0)*m(1,1) - m(0,1)*m(1,0); } }; template < typename EXP > struct det_helper<EXP,3> { static const typename matrix_exp<EXP>::type det ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); typedef typename matrix_exp<EXP>::type type; type temp = m(0,0)*(m(1,1)*m(2,2) - m(1,2)*m(2,1)) - m(0,1)*(m(1,0)*m(2,2) - m(1,2)*m(2,0)) + m(0,2)*(m(1,0)*m(2,1) - m(1,1)*m(2,0)); return temp; } }; template < typename EXP > inline const typename matrix_exp<EXP>::type det ( const matrix_exp<EXP>& m ) { return det_helper<EXP>::det(m); } template < typename EXP > struct det_helper<EXP,4> { static const typename matrix_exp<EXP>::type det ( const matrix_exp<EXP>& m ) { COMPILE_TIME_ASSERT(matrix_exp<EXP>::NR == matrix_exp<EXP>::NC); typedef typename matrix_exp<EXP>::type type; type temp = m(0,0)*(dlib::det(removerc<0,0>(m))) - m(0,1)*(dlib::det(removerc<0,1>(m))) + m(0,2)*(dlib::det(removerc<0,2>(m))) - m(0,3)*(dlib::det(removerc<0,3>(m))); return temp; } }; // ---------------------------------------------------------------------------------------- template <typename EXP> const matrix<typename EXP::type, EXP::NR, 1, typename EXP::mem_manager_type, typename EXP::layout_type> real_eigenvalues ( const matrix_exp<EXP>& m ) { // You can only use this function with matrices that contain float or double values COMPILE_TIME_ASSERT((is_same_type<typename EXP::type, float>::value || is_same_type<typename EXP::type, double>::value)); DLIB_ASSERT(m.nr() == m.nc(), "\tconst matrix real_eigenvalues()" << "\n\tYou have given an invalidly sized matrix" << "\n\tm.nr(): " << m.nr() << "\n\tm.nc(): " << m.nc() ); if (m.nr() == 2) { typedef typename EXP::type T; const T m00 = m(0,0); const T m01 = m(0,1); const T m10 = m(1,0); const T m11 = m(1,1); const T b = -(m00 + m11); const T c = m00*m11 - m01*m10; matrix<T,EXP::NR,1, typename EXP::mem_manager_type, typename EXP::layout_type> v(2); T disc = b*b - 4*c; if (disc >= 0) disc = std::sqrt(disc); else disc = 0; v(0) = (-b + disc)/2; v(1) = (-b - disc)/2; return v; } else { // Call .ref() so that the symmetric matrix overload can take effect if m // has the appropriate type. return eigenvalue_decomposition<EXP>(m.ref()).get_real_eigenvalues(); } } // ---------------------------------------------------------------------------------------- template < typename EXP > dlib::vector<double,2> max_point_interpolated ( const matrix_exp<EXP>& m ) { DLIB_ASSERT(m.size() > 0, "\tdlib::vector<double,2> point max_point_interpolated(const matrix_exp& m)" << "\n\tm can't be empty" << "\n\tm.size(): " << m.size() << "\n\tm.nr(): " << m.nr() << "\n\tm.nc(): " << m.nc() ); const point p = max_point(m); // If this is a column vector then just do interpolation along a line. if (m.nc()==1) { const long pos = p.y(); if (0 < pos && pos+1 < m.nr()) { double v1 = dlib::impl::magnitude(m(pos-1)); double v2 = dlib::impl::magnitude(m(pos)); double v3 = dlib::impl::magnitude(m(pos+1)); double y = lagrange_poly_min_extrap(pos-1,pos,pos+1, -v1, -v2, -v3); return vector<double,2>(0,y); } } // If this is a row vector then just do interpolation along a line. if (m.nr()==1) { const long pos = p.x(); if (0 < pos && pos+1 < m.nc()) { double v1 = dlib::impl::magnitude(m(pos-1)); double v2 = dlib::impl::magnitude(m(pos)); double v3 = dlib::impl::magnitude(m(pos+1)); double x = lagrange_poly_min_extrap(pos-1,pos,pos+1, -v1, -v2, -v3); return vector<double,2>(x,0); } } // If it's on the border then just return the regular max point. if (shrink_rect(get_rect(m),1).contains(p) == false) return p; //matrix<double> A(9,6); //matrix<double,0,1> G(9); matrix<double,9,1> pix; long i = 0; for (long r = -1; r <= +1; ++r) { for (long c = -1; c <= +1; ++c) { pix(i) = dlib::impl::magnitude(m(p.y()+r,p.y()+c)); /* A(i,0) = c*c; A(i,1) = c*r; A(i,2) = r*r; A(i,3) = c; A(i,4) = r; A(i,5) = 1; G(i) = std::exp(-1*(r*r+c*c)/2.0); // Use a gaussian windowing function around p. */ ++i; } } // This bit of code is how we generated the derivative_filters matrix below. //A = diagm(G)*A; //std::cout << std::setprecision(20) << inv(trans(A)*A)*trans(A)*diagm(G) << std::endl; exit(1); const double m10 = 0.10597077880854270659; const double m21 = 0.21194155761708535768; const double m28 = 0.28805844238291455905; const double m57 = 0.57611688476582878504; // So this derivative_filters finds the parameters of the quadratic surface that best fits // the 3x3 region around p. Then we find the maximizer of that surface within that // small region and return that as the maximum location. const double derivative_filters[] = { // xx m10,-m21,m10, m28,-m57,m28, m10,-m21,m10, // xy 0.25 ,0,-0.25, 0 ,0, 0, -0.25,0,0.25, // yy m10, m28, m10, -m21,-m57,-m21, m10, m28, m10, // x -m10,0,m10, -m28,0,m28, -m10,0,m10, // y -m10,-m28,-m10, 0, 0, 0, m10, m28, m10 }; const matrix<double,5,9> filt(derivative_filters); // Now w contains the parameters of the quadratic surface const matrix<double,5,1> w = filt*pix; // Now newton step to the max point on the surface matrix<double,2,2> H; matrix<double,2,1> g; H = 2*w(0), w(1), w(1), 2*w(2); g = w(3), w(4); const dlib::vector<double,2> delta = -inv(H)*g; // if delta isn't in an ascent direction then just use the normal max point. if (dot(delta, g) < 0) return p; else return vector<double,2>(p)+dlib::clamp(delta, -1, 1); } // ---------------------------------------------------------------------------------------- } #endif // DLIB_MATRIx_LA_FUNCTS_