// Copyright (C) 2016 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_RuNNING_GRADIENT_Hh_ #define DLIB_RuNNING_GRADIENT_Hh_ #include "running_gradient_abstract.h" #include "../algs.h" #include "../serialize.h" #include <cmath> #include "../matrix.h" #include <algorithm> namespace dlib { class running_gradient { public: running_gradient ( ) { clear(); } void clear( ) { n = 0; R = identity_matrix<double>(2)*1e6; w = 0; residual_squared = 0; } double current_n ( ) const { return n; } void add( double y ) { matrix<double,2,1> x; x = n, 1; // Do recursive least squares computations const double temp = 1 + trans(x)*R*x; matrix<double,2,1> tmp = R*x; R = R - (tmp*trans(tmp))/temp; // R should always be symmetric. This line improves numeric stability of this algorithm. R = 0.5*(R + trans(R)); w = w + R*x*(y - trans(x)*w); // Also, recursively keep track of the residual error between the given value // and what our linear predictor outputs. residual_squared = residual_squared + std::pow((y - trans(x)*w),2.0)*temp; ++n; } double gradient ( ) const { // make sure requires clause is not broken DLIB_ASSERT(current_n() > 1, "\t double running_gradient::gradient()" << "\n\t You must add more values into this object before calling this function." << "\n\t this: " << this ); return w(0); } double intercept ( ) const { // make sure requires clause is not broken DLIB_ASSERT(current_n() > 0, "\t double running_gradient::intercept()" << "\n\t You must add more values into this object before calling this function." << "\n\t this: " << this ); return w(1); } double standard_error ( ) const { // make sure requires clause is not broken DLIB_ASSERT(current_n() > 2, "\t double running_gradient::standard_error()" << "\n\t You must add more values into this object before calling this function." << "\n\t this: " << this ); const double s = residual_squared/(n-2); const double adjust = 12.0/(std::pow(current_n(),3.0) - current_n()); return std::sqrt(s*adjust); } double probability_gradient_less_than ( double thresh ) const { // make sure requires clause is not broken DLIB_ASSERT(current_n() > 2, "\t double running_gradient::probability_gradient_less_than()" << "\n\t You must add more values into this object before calling this function." << "\n\t this: " << this ); return normal_cdf(thresh, gradient(), standard_error()); } double probability_gradient_greater_than ( double thresh ) const { // make sure requires clause is not broken DLIB_ASSERT(current_n() > 2, "\t double running_gradient::probability_gradient_greater_than()" << "\n\t You must add more values into this object before calling this function." << "\n\t this: " << this ); return 1-probability_gradient_less_than(thresh); } friend void serialize (const running_gradient& item, std::ostream& out) { int version = 1; serialize(version, out); serialize(item.n, out); serialize(item.R, out); serialize(item.w, out); serialize(item.residual_squared, out); } friend void deserialize (running_gradient& item, std::istream& in) { int version = 0; deserialize(version, in); if (version != 1) throw serialization_error("Unexpected version found while deserializing dlib::running_gradient."); deserialize(item.n, in); deserialize(item.R, in); deserialize(item.w, in); deserialize(item.residual_squared, in); } private: static double normal_cdf(double value, double mean, double stddev) { if (stddev == 0) { if (value < mean) return 0; else if (value > mean) return 1; else return 0.5; } value = (value-mean)/stddev; return 0.5 * std::erfc(-value / std::sqrt(2.0)); } double n; matrix<double,2,2> R; matrix<double,2,1> w; double residual_squared; }; // ---------------------------------------------------------------------------------------- template < typename T > double probability_gradient_less_than ( const T& container, double thresh ) { running_gradient g; for(auto&& v : container) g.add(v); // make sure requires clause is not broken DLIB_ASSERT(g.current_n() > 2, "\t double probability_gradient_less_than()" << "\n\t You need more than 2 elements in the given container to call this function." ); return g.probability_gradient_less_than(thresh); } template < typename T > double probability_gradient_greater_than ( const T& container, double thresh ) { running_gradient g; for(auto&& v : container) g.add(v); // make sure requires clause is not broken DLIB_ASSERT(g.current_n() > 2, "\t double probability_gradient_greater_than()" << "\n\t You need more than 2 elements in the given container to call this function." ); return g.probability_gradient_greater_than(thresh); } // ---------------------------------------------------------------------------------------- template < typename T > double find_upper_quantile ( const T& container_, double quantile ) { DLIB_CASSERT(0 <= quantile && quantile <= 1.0); // copy container into a std::vector std::vector<double> container(container_.begin(), container_.end()); DLIB_CASSERT(container.size() > 0); size_t idx_upper = std::round((container.size()-1)*(1-quantile)); std::nth_element(container.begin(), container.begin()+idx_upper, container.end()); auto upper_q = *(container.begin()+idx_upper); return upper_q; } // ---------------------------------------------------------------------------------------- template < typename T > double probability_values_are_increasing ( const T& container ) { running_gradient g; for (auto x : container) { g.add(x); } if (g.current_n() > 2) return g.probability_gradient_greater_than(0); else return 0.5; } // ---------------------------------------------------------------------------------------- template < typename T > double probability_values_are_increasing_robust ( const T& container, double quantile_discard = 0.10 ) { const auto quantile_thresh = find_upper_quantile(container, quantile_discard); running_gradient g; for (auto x : container) { // Ignore values that are too large. if (x <= quantile_thresh) g.add(x); } if (g.current_n() > 2) return g.probability_gradient_greater_than(0); else return 0.5; } // ---------------------------------------------------------------------------------------- template < typename T > size_t count_steps_without_decrease ( const T& container, double probability_of_decrease = 0.51 ) { // make sure requires clause is not broken DLIB_ASSERT(0.5 < probability_of_decrease && probability_of_decrease < 1, "\t size_t count_steps_without_decrease()" << "\n\t probability_of_decrease: "<< probability_of_decrease ); running_gradient g; size_t count = 0; size_t j = 0; for (auto i = container.rbegin(); i != container.rend(); ++i) { ++j; g.add(*i); if (g.current_n() > 2) { // Note that this only looks backwards because we are looping over the // container backwards. So here we are really checking if the gradient isn't // decreasing. double prob_decreasing = g.probability_gradient_greater_than(0); // If we aren't confident things are decreasing. if (prob_decreasing < probability_of_decrease) count = j; } } return count; } // ---------------------------------------------------------------------------------------- template < typename T > size_t count_steps_without_decrease_robust ( const T& container, double probability_of_decrease = 0.51, double quantile_discard = 0.10 ) { // make sure requires clause is not broken DLIB_ASSERT(0 <= quantile_discard && quantile_discard <= 1); DLIB_ASSERT(0.5 < probability_of_decrease && probability_of_decrease < 1, "\t size_t count_steps_without_decrease_robust()" << "\n\t probability_of_decrease: "<< probability_of_decrease ); if (container.size() == 0) return 0; const auto quantile_thresh = find_upper_quantile(container, quantile_discard); running_gradient g; size_t count = 0; size_t j = 0; for (auto i = container.rbegin(); i != container.rend(); ++i) { ++j; // ignore values that are too large if (*i <= quantile_thresh) g.add(*i); if (g.current_n() > 2) { // Note that this only looks backwards because we are looping over the // container backwards. So here we are really checking if the gradient isn't // decreasing. double prob_decreasing = g.probability_gradient_greater_than(0); // If we aren't confident things are decreasing. if (prob_decreasing < probability_of_decrease) count = j; } } return count; } // ---------------------------------------------------------------------------------------- template < typename T > size_t count_steps_without_increase ( const T& container, double probability_of_increase = 0.51 ) { // make sure requires clause is not broken DLIB_ASSERT(0.5 < probability_of_increase && probability_of_increase < 1, "\t size_t count_steps_without_increase()" << "\n\t probability_of_increase: "<< probability_of_increase ); running_gradient g; size_t count = 0; size_t j = 0; for (auto i = container.rbegin(); i != container.rend(); ++i) { ++j; g.add(*i); if (g.current_n() > 2) { // Note that this only looks backwards because we are looping over the // container backwards. So here we are really checking if the gradient isn't // increasing. double prob_increasing = g.probability_gradient_less_than(0); // If we aren't confident things are increasing. if (prob_increasing < probability_of_increase) count = j; } } return count; } // ---------------------------------------------------------------------------------------- } #endif // DLIB_RuNNING_GRADIENT_Hh_