File size: 24,567 Bytes
ba9f995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
"""
This module provides custom implementation of a document retriever, designed for multi-stage retrieval.
The system uses ensemble methods combining BM25 and Chroma Embeddings to retrieve relevant documents for a given query.
It also utilizes various optimizations like rank fusion and weighted reciprocal rank by Langchain.

Classes:
--------
- MyEnsembleRetriever: Custom retriever for BM25 and Chroma Embeddings.
- MyRetriever: Handles multi-stage retrieval.

"""
import re
import ast
import copy
import math
import logging
from typing import Dict, List, Optional
from langchain.chains import LLMChain
from langchain.schema import BaseRetriever, Document
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.callbacks.manager import (
    AsyncCallbackManagerForRetrieverRun,
    CallbackManagerForRetrieverRun,
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
)

from toolkit.utils import Config, clean_text, DocIndexer, IndexerOperator
from toolkit.prompts import PromptTemplates

prompt_templates = PromptTemplates()

configs = Config("configparser.ini")
logger = logging.getLogger(__name__)


class MyEnsembleRetriever(EnsembleRetriever):
    """
    Custom retriever for BM24 and Chroma Embeddings
    """

    retrievers: Dict[str, BaseRetriever]

    def rank_fusion(
        self, query: str, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        """
        Retrieve the results of the retrievers and use rank_fusion_func to get
        the final result.

        Args:
            query: The query to search for.

        Returns:
            A list of reranked documents.
        """
        # Get the results of all retrievers.
        retriever_docs = []
        for key, retriever in self.retrievers.items():
            if key == "bm25":
                res = retriever.get_relevant_documents(
                    clean_text(query),
                    callbacks=run_manager.get_child(tag=f"retriever_{key}"),
                )
                retriever_docs.append(res)
            else:
                res = retriever.get_relevant_documents(
                    query, callbacks=run_manager.get_child(tag=f"retriever_{key}")
                )
                retriever_docs.append(res)

        # apply rank fusion
        fused_documents = self.weighted_reciprocal_rank(retriever_docs)

        return fused_documents

    async def arank_fusion(
        self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun
    ) -> List[Document]:
        """
        Asynchronously retrieve the results of the retrievers
        and use rank_fusion_func to get the final result.

        Args:
            query: The query to search for.

        Returns:
            A list of reranked documents.
        """

        # Get the results of all retrievers.
        retriever_docs = []
        for key, retriever in self.retrievers.items():
            if key == "bm25":
                res = retriever.get_relevant_documents(
                    clean_text(query),
                    callbacks=run_manager.get_child(tag=f"retriever_{key}"),
                )
                retriever_docs.append(res)
                # print("retriever_docs 1:", res)
            else:
                res = await retriever.aget_relevant_documents(
                    query, callbacks=run_manager.get_child(tag=f"retriever_{key}")
                )
                retriever_docs.append(res)

        # apply rank fusion
        fused_documents = self.weighted_reciprocal_rank(retriever_docs)

        return fused_documents

    def weighted_reciprocal_rank(
        self, doc_lists: List[List[Document]]
    ) -> List[Document]:
        """
        Perform weighted Reciprocal Rank Fusion on multiple rank lists.
        You can find more details about RRF here:
        https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf

        Args:
            doc_lists: A list of rank lists, where each rank list contains unique items.

        Returns:
            list: The final aggregated list of items sorted by their weighted RRF
                    scores in descending order.
        """
        if len(doc_lists) != len(self.weights):
            raise ValueError(
                "Number of rank lists must be equal to the number of weights."
            )

        # replace the page_content with the original uncleaned page_content
        doc_lists_ = copy.copy(doc_lists)
        for doc_list in doc_lists_:
            for doc in doc_list:
                doc.page_content = doc.metadata["page_content"]
                # doc.metadata["page_content"] = None

        # Create a union of all unique documents in the input doc_lists
        all_documents = set()
        for doc_list in doc_lists_:
            for doc in doc_list:
                all_documents.add(doc.page_content)

        # Initialize the RRF score dictionary for each document
        rrf_score_dic = {doc: 0.0 for doc in all_documents}

        # Calculate RRF scores for each document
        for doc_list, weight in zip(doc_lists_, self.weights):
            for rank, doc in enumerate(doc_list, start=1):
                rrf_score = weight * (1 / (rank + self.c))
                rrf_score_dic[doc.page_content] += rrf_score

        # Sort documents by their RRF scores in descending order
        sorted_documents = sorted(
            rrf_score_dic.keys(), key=lambda x: rrf_score_dic[x], reverse=True
        )

        # Map the sorted page_content back to the original document objects
        page_content_to_doc_map = {
            doc.page_content: doc for doc_list in doc_lists_ for doc in doc_list
        }
        sorted_docs = [
            page_content_to_doc_map[page_content] for page_content in sorted_documents
        ]

        return sorted_docs


class MyRetriever:
    """
    Retriever class to handle multi-stage retrieval.
    """

    def __init__(
        self,
        llm,
        embedding_chunks_small: List[Document],
        embedding_chunks_medium: List[Document],
        docs_chunks_small: DocIndexer,
        docs_chunks_medium: DocIndexer,
        first_retrieval_k: int,
        second_retrieval_k: int,
        num_windows: int,
        retriever_weights: List[float],
    ):
        """
        Initialize the MyRetriever class.

        Args:
            llm: Language model for retrieval.
            embedding_chunks_small (List[Document]): List of small embedding chunks.
            embedding_chunks_medium (List[Document]): List of medium embedding chunks.
            docs_chunks_small (DocIndexer): Document indexer for small chunks.
            docs_chunks_medium (DocIndexer): Document indexer for medium chunks.
            first_retrieval_k (int): Number of top documents to retrieve in first retrieval.
            second_retrieval_k (int): Number of top documents to retrieve in second retrieval.
            num_windows (int): Number of overlapping windows to consider.
            retriever_weights (List[float]): Weights for ensemble retrieval.
        """
        self.llm = llm
        self.embedding_chunks_small = embedding_chunks_small
        self.embedding_chunks_medium = embedding_chunks_medium
        self.docs_index_small = DocIndexer(docs_chunks_small)
        self.docs_index_medium = DocIndexer(docs_chunks_medium)

        self.first_retrieval_k = first_retrieval_k
        self.second_retrieval_k = second_retrieval_k
        self.num_windows = num_windows
        self.retriever_weights = retriever_weights

    def get_retriever(
        self,
        docs_chunks,
        emb_chunks,
        emb_filter=None,
        k=2,
        weights=(0.5, 0.5),
    ):
        """
        Initialize and return a retriever instance with specified parameters.

        Args:
            docs_chunks: The document chunks for the BM25 retriever.
            emb_chunks: The document chunks for the Embedding retriever.
            emb_filter: A filter for embedding retriever.
            k (int): The number of top documents to return.
            weights (list): Weights for ensemble retrieval.

        Returns:
            MyEnsembleRetriever: An instance of MyEnsembleRetriever.
        """
        bm25_retriever = BM25Retriever.from_documents(docs_chunks)
        bm25_retriever.k = k

        emb_retriever = emb_chunks.as_retriever(
            search_kwargs={
                "filter": emb_filter,
                "k": k,
                "search_type": "mmr",
            }
        )
        return MyEnsembleRetriever(
            retrievers={"bm25": bm25_retriever, "chroma": emb_retriever},
            weights=weights,
        )

    def find_overlaps(self, doc: List[Document]):
        """
        Find overlapping intervals of windows.

        Args:
            doc (Document): A document object to find overlaps in.

        Returns:
            list: A list of overlapping intervals.
        """
        intervals = []
        for item in doc:
            intervals.append(
                (
                    item.metadata["large_chunks_idx_lower_bound"],
                    item.metadata["large_chunks_idx_upper_bound"],
                )
            )
        remaining_intervals, grouped_intervals, centroids = intervals.copy(), [], []

        while remaining_intervals:
            curr_interval = remaining_intervals.pop(0)
            curr_group = [curr_interval]
            subset_interval = None

            for start, end in remaining_intervals.copy():
                for s, e in curr_group:
                    overlap = set(range(s, e + 1)) & set(range(start, end + 1))
                    if overlap:
                        curr_group.append((start, end))
                        remaining_intervals.remove((start, end))
                        if set(range(start, end + 1)).issubset(set(range(s, e + 1))):
                            subset_interval = (start, end)
                        break

            if subset_interval:
                centroid = [math.ceil((subset_interval[0] + subset_interval[1]) / 2)]
            elif len(curr_group) > 2:
                first_overlap = max(
                    set(range(curr_group[0][0], curr_group[0][1] + 1))
                    & set(range(curr_group[1][0], curr_group[1][1] + 1))
                )
                last_overlap_set = set(
                    range(curr_group[-1][0], curr_group[-1][1] + 1)
                ) & set(range(curr_group[-2][0], curr_group[-2][1] + 1))

                if not last_overlap_set:
                    last_overlap = first_overlap  # Fallback if no overlap
                else:
                    last_overlap = min(last_overlap_set)

                step = 1 if first_overlap <= last_overlap else -1
                centroid = list(range(first_overlap, last_overlap + step, step))
            else:
                centroid = [
                    round(
                        sum([math.ceil((s + e) / 2) for s, e in curr_group])
                        / len(curr_group)
                    )
                ]

            grouped_intervals.append(
                curr_group if len(curr_group) > 1 else curr_group[0]
            )
            centroids.extend(centroid)

        return centroids

    def get_filter(self, top_k: int, file_md5: str, doc: List[Document]):
        """
        Create a filter for retrievers based on overlapping intervals.

        Args:
            top_k (int): Number of top intervals to consider.
            file_md5 (str): MD5 hash of the file to filter.
            doc (List[Document]): List of document objects.

        Returns:
            tuple: A tuple of containing dictionary filters for DocIndexer and Chroma retrievers.
        """
        overlaps = self.find_overlaps(doc)
        if len(overlaps) < 1:
            raise ValueError("No overlapping intervals found.")

        overlaps_k = overlaps[:top_k]
        logger.info("windows_at_2nd_retrieval: %s", overlaps_k)
        search_dict_docindexer = {"OR": []}
        search_dict_chroma = {"$or": []}

        for chunk_idx in overlaps_k:
            search_dict_docindexer["OR"].append(
                {
                    "large_chunks_idx_lower_bound": (
                        IndexerOperator.LTE,
                        chunk_idx,
                    ),
                    "large_chunks_idx_upper_bound": (
                        IndexerOperator.GTE,
                        chunk_idx,
                    ),
                    "source_md5": (IndexerOperator.EQ, file_md5),
                }
            )

            if len(overlaps_k) == 1:
                search_dict_chroma = {
                    "$and": [
                        {"large_chunks_idx_lower_bound": {"$lte": overlaps_k[0]}},
                        {"large_chunks_idx_upper_bound": {"$gte": overlaps_k[0]}},
                        {"source_md5": {"$eq": file_md5}},
                    ]
                }
            else:
                search_dict_chroma["$or"].append(
                    {
                        "$and": [
                            {"large_chunks_idx_lower_bound": {"$lte": chunk_idx}},
                            {"large_chunks_idx_upper_bound": {"$gte": chunk_idx}},
                            {"source_md5": {"$eq": file_md5}},
                        ]
                    }
                )

        return search_dict_docindexer, search_dict_chroma

    def get_relevant_doc_ids(self, docs: List[Document], query: str):
        """
        Get relevant document IDs given a query using an LLM.

        Args:
            docs (List[Document]): List of document objects to find relevant IDs in.
            query (str): The query string.

        Returns:
            list: A list of relevant document IDs.
        """
        snippets = "\n\n\n".join(
            [
                f"Context {idx}:\n{{{doc.page_content}}}. {{source: {doc.metadata['source']}}}"
                for idx, doc in enumerate(docs)
            ]
        )
        id_chain = LLMChain(
            llm=self.llm,
            prompt=prompt_templates.get_docs_selection_template(configs.model_name),
            output_key="IDs",
        )
        ids = id_chain.run({"query": query, "snippets": snippets})
        logger.info("relevant doc ids: %s", ids)
        pattern = r"\[\s*\d+\s*(?:,\s*\d+\s*)*\]"
        match = re.search(pattern, ids)
        if match:
            return ast.literal_eval(match.group(0))
        else:
            return []

    def get_relevant_documents(
        self,
        query: str,
        num_query: int,
        *,
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> List[Document]:
        """
        Perform multi-stage retrieval to get relevant documents.

        Args:
            query (str): The query string.
            num_query (int): Number of queries.
            run_manager (Optional[CallbackManagerForChainRun], optional): Callback manager for chain run.

        Returns:
            List[Document]: A list of relevant documents.
        """
        # ! First retrieval
        first_retriever = self.get_retriever(
            docs_chunks=self.docs_index_small.documents,
            emb_chunks=self.embedding_chunks_small,
            emb_filter=None,
            k=self.first_retrieval_k,
            weights=self.retriever_weights,
        )
        first = first_retriever.get_relevant_documents(
            query, callbacks=run_manager.get_child()
        )
        for doc in first:
            logger.info("----1st retrieval----: %s", doc)
        ids_clean = self.get_relevant_doc_ids(first, query)
        # ids_clean = [0, 1, 2]
        logger.info("relevant cleaned doc ids: %s", ids_clean)
        qa_chunks = {}  # key is file name, value is a list of relevant documents
        # res_chunks = []
        if ids_clean and isinstance(ids_clean, list):
            source_md5_dict = {}
            for ids_c in ids_clean:
                if ids_c < len(first):
                    if ids_c not in source_md5_dict:
                        source_md5_dict[first[ids_c].metadata["source_md5"]] = [
                            first[ids_c]
                        ]
                    # else:
                    #     source_md5_dict[first[ids_c].metadata["source_md5"]].append(
                    #         ids_clean[ids_c]
                    #     )
            if len(source_md5_dict) == 0:
                source_md5_dict[first[0].metadata["source_md5"]] = [first[0]]
            num_docs = len(source_md5_dict.keys())
            third_num_k = max(
                1,
                (
                    int(
                        (
                            configs.max_llm_context
                            / (configs.base_chunk_size * configs.chunk_scale)
                        )
                        // (num_docs * num_query)
                    )
                ),
            )

            for source_md5, docs in source_md5_dict.items():
                logger.info(
                    "selected_docs_at_1st_retrieval: %s", docs[0].metadata["source"]
                )
                second_docs_chunks = self.docs_index_small.retrieve_metadata(
                    {
                        "source_md5": (IndexerOperator.EQ, source_md5),
                    }
                )
                second_retriever = self.get_retriever(
                    docs_chunks=second_docs_chunks,
                    emb_chunks=self.embedding_chunks_small,
                    emb_filter={"source_md5": source_md5},
                    k=self.second_retrieval_k,
                    weights=self.retriever_weights,
                )
                # ! Second retrieval
                second = second_retriever.get_relevant_documents(
                    query, callbacks=run_manager.get_child()
                )
                for doc in second:
                    logger.info("----2nd retrieval----: %s", doc)
                docs.extend(second)
                docindexer_filter, chroma_filter = self.get_filter(
                    self.num_windows, source_md5, docs
                )
                third_docs_chunks = self.docs_index_medium.retrieve_metadata(
                    docindexer_filter
                )
                third_retriever = self.get_retriever(
                    docs_chunks=third_docs_chunks,
                    emb_chunks=self.embedding_chunks_medium,
                    emb_filter=chroma_filter,
                    k=third_num_k,
                    weights=self.retriever_weights,
                )
                # ! Third retrieval
                third_temp = third_retriever.get_relevant_documents(
                    query, callbacks=run_manager.get_child()
                )
                third = third_temp[:third_num_k]
                # chunks = sorted(third, key=lambda x: x.metadata["medium_chunk_idx"])
                for doc in third:
                    logger.info(
                        "----3rd retrieval----page_content: %s", [doc.page_content]
                    )
                    mtdata = doc.metadata
                    mtdata["page_content"] = None
                    logger.info("----3rd retrieval----metadata: %s", mtdata)
                file_name = third[0].metadata["source"].split("/")[-1]
                if file_name not in qa_chunks:
                    qa_chunks[file_name] = third
                else:
                    qa_chunks[file_name].extend(third)

        return qa_chunks

    async def aget_relevant_documents(
        self,
        query: str,
        num_query: int,
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """
        Asynchronous version of get_relevant_documents method.

        Args:
            query (str): The query string.
            num_query (int): Number of queries.
            run_manager (AsyncCallbackManagerForChainRun): Callback manager for asynchronous chain run.

        Returns:
            List[Document]: A list of relevant documents.
        """
        # ! First retrieval
        first_retriever = self.get_retriever(
            docs_chunks=self.docs_index_small.documents,
            emb_chunks=self.embedding_chunks_small,
            emb_filter=None,
            k=self.first_retrieval_k,
            weights=self.retriever_weights,
        )
        first = await first_retriever.aget_relevant_documents(
            query, callbacks=run_manager.get_child()
        )
        for doc in first:
            logger.info("----1st retrieval----: %s", doc)
        ids_clean = self.get_relevant_doc_ids(first, query)
        logger.info("relevant doc ids: %s", ids_clean)
        qa_chunks = {}  # key is file name, value is a list of relevant documents
        # res_chunks = []
        if ids_clean and isinstance(ids_clean, list):
            source_md5_dict = {}
            for ids_c in ids_clean:
                if ids_c < len(first):
                    if ids_c not in source_md5_dict:
                        source_md5_dict[first[ids_c].metadata["source_md5"]] = [
                            first[ids_c]
                        ]
                    # else:
                    #     source_md5_dict[first[ids_c].metadata["source_md5"]].append(
                    #         ids_clean[ids_c]
                    #     )
            if len(source_md5_dict) == 0:
                source_md5_dict[first[0].metadata["source_md5"]] = [first[0]]
            num_docs = len(source_md5_dict.keys())
            third_num_k = max(
                1,
                (
                    int(
                        (
                            configs.max_llm_context
                            / (configs.base_chunk_size * configs.chunk_scale)
                        )
                        // (num_docs * num_query)
                    )
                ),
            )

            for source_md5, docs in source_md5_dict.items():
                logger.info(
                    "selected_docs_at_1st_retrieval: %s", docs[0].metadata["source"]
                )
                second_docs_chunks = self.docs_index_small.retrieve_metadata(
                    {
                        "source_md5": (IndexerOperator.EQ, source_md5),
                    }
                )
                second_retriever = self.get_retriever(
                    docs_chunks=second_docs_chunks,
                    emb_chunks=self.embedding_chunks_small,
                    emb_filter={"source_md5": source_md5},
                    k=self.second_retrieval_k,
                    weights=self.retriever_weights,
                )
                # ! Second retrieval
                second = await second_retriever.aget_relevant_documents(
                    query, callbacks=run_manager.get_child()
                )
                for doc in second:
                    logger.info("----2nd retrieval----: %s", doc)
                docs.extend(second)
                docindexer_filter, chroma_filter = self.get_filter(
                    self.num_windows, source_md5, docs
                )
                third_docs_chunks = self.docs_index_medium.retrieve_metadata(
                    docindexer_filter
                )
                third_retriever = self.get_retriever(
                    docs_chunks=third_docs_chunks,
                    emb_chunks=self.embedding_chunks_medium,
                    emb_filter=chroma_filter,
                    k=third_num_k,
                    weights=self.retriever_weights,
                )
                # ! Third retrieval
                third_temp = await third_retriever.aget_relevant_documents(
                    query, callbacks=run_manager.get_child()
                )
                third = third_temp[:third_num_k]
                # chunks = sorted(third, key=lambda x: x.metadata["medium_chunk_idx"])
                for doc in third:
                    logger.info(
                        "----3rd retrieval----page_content: %s", [doc.page_content]
                    )
                    mtdata = doc.metadata
                    mtdata["page_content"] = None
                    logger.info("----3rd retrieval----metadata: %s", mtdata)
                file_name = third[0].metadata["source"].split("/")[-1]
                if file_name not in qa_chunks:
                    qa_chunks[file_name] = third
                else:
                    qa_chunks[file_name].extend(third)

        return qa_chunks