Spaces:
Sleeping
Sleeping
File size: 24,567 Bytes
ba9f995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
"""
This module provides custom implementation of a document retriever, designed for multi-stage retrieval.
The system uses ensemble methods combining BM25 and Chroma Embeddings to retrieve relevant documents for a given query.
It also utilizes various optimizations like rank fusion and weighted reciprocal rank by Langchain.
Classes:
--------
- MyEnsembleRetriever: Custom retriever for BM25 and Chroma Embeddings.
- MyRetriever: Handles multi-stage retrieval.
"""
import re
import ast
import copy
import math
import logging
from typing import Dict, List, Optional
from langchain.chains import LLMChain
from langchain.schema import BaseRetriever, Document
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from toolkit.utils import Config, clean_text, DocIndexer, IndexerOperator
from toolkit.prompts import PromptTemplates
prompt_templates = PromptTemplates()
configs = Config("configparser.ini")
logger = logging.getLogger(__name__)
class MyEnsembleRetriever(EnsembleRetriever):
"""
Custom retriever for BM24 and Chroma Embeddings
"""
retrievers: Dict[str, BaseRetriever]
def rank_fusion(
self, query: str, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""
Retrieve the results of the retrievers and use rank_fusion_func to get
the final result.
Args:
query: The query to search for.
Returns:
A list of reranked documents.
"""
# Get the results of all retrievers.
retriever_docs = []
for key, retriever in self.retrievers.items():
if key == "bm25":
res = retriever.get_relevant_documents(
clean_text(query),
callbacks=run_manager.get_child(tag=f"retriever_{key}"),
)
retriever_docs.append(res)
else:
res = retriever.get_relevant_documents(
query, callbacks=run_manager.get_child(tag=f"retriever_{key}")
)
retriever_docs.append(res)
# apply rank fusion
fused_documents = self.weighted_reciprocal_rank(retriever_docs)
return fused_documents
async def arank_fusion(
self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
"""
Asynchronously retrieve the results of the retrievers
and use rank_fusion_func to get the final result.
Args:
query: The query to search for.
Returns:
A list of reranked documents.
"""
# Get the results of all retrievers.
retriever_docs = []
for key, retriever in self.retrievers.items():
if key == "bm25":
res = retriever.get_relevant_documents(
clean_text(query),
callbacks=run_manager.get_child(tag=f"retriever_{key}"),
)
retriever_docs.append(res)
# print("retriever_docs 1:", res)
else:
res = await retriever.aget_relevant_documents(
query, callbacks=run_manager.get_child(tag=f"retriever_{key}")
)
retriever_docs.append(res)
# apply rank fusion
fused_documents = self.weighted_reciprocal_rank(retriever_docs)
return fused_documents
def weighted_reciprocal_rank(
self, doc_lists: List[List[Document]]
) -> List[Document]:
"""
Perform weighted Reciprocal Rank Fusion on multiple rank lists.
You can find more details about RRF here:
https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
Args:
doc_lists: A list of rank lists, where each rank list contains unique items.
Returns:
list: The final aggregated list of items sorted by their weighted RRF
scores in descending order.
"""
if len(doc_lists) != len(self.weights):
raise ValueError(
"Number of rank lists must be equal to the number of weights."
)
# replace the page_content with the original uncleaned page_content
doc_lists_ = copy.copy(doc_lists)
for doc_list in doc_lists_:
for doc in doc_list:
doc.page_content = doc.metadata["page_content"]
# doc.metadata["page_content"] = None
# Create a union of all unique documents in the input doc_lists
all_documents = set()
for doc_list in doc_lists_:
for doc in doc_list:
all_documents.add(doc.page_content)
# Initialize the RRF score dictionary for each document
rrf_score_dic = {doc: 0.0 for doc in all_documents}
# Calculate RRF scores for each document
for doc_list, weight in zip(doc_lists_, self.weights):
for rank, doc in enumerate(doc_list, start=1):
rrf_score = weight * (1 / (rank + self.c))
rrf_score_dic[doc.page_content] += rrf_score
# Sort documents by their RRF scores in descending order
sorted_documents = sorted(
rrf_score_dic.keys(), key=lambda x: rrf_score_dic[x], reverse=True
)
# Map the sorted page_content back to the original document objects
page_content_to_doc_map = {
doc.page_content: doc for doc_list in doc_lists_ for doc in doc_list
}
sorted_docs = [
page_content_to_doc_map[page_content] for page_content in sorted_documents
]
return sorted_docs
class MyRetriever:
"""
Retriever class to handle multi-stage retrieval.
"""
def __init__(
self,
llm,
embedding_chunks_small: List[Document],
embedding_chunks_medium: List[Document],
docs_chunks_small: DocIndexer,
docs_chunks_medium: DocIndexer,
first_retrieval_k: int,
second_retrieval_k: int,
num_windows: int,
retriever_weights: List[float],
):
"""
Initialize the MyRetriever class.
Args:
llm: Language model for retrieval.
embedding_chunks_small (List[Document]): List of small embedding chunks.
embedding_chunks_medium (List[Document]): List of medium embedding chunks.
docs_chunks_small (DocIndexer): Document indexer for small chunks.
docs_chunks_medium (DocIndexer): Document indexer for medium chunks.
first_retrieval_k (int): Number of top documents to retrieve in first retrieval.
second_retrieval_k (int): Number of top documents to retrieve in second retrieval.
num_windows (int): Number of overlapping windows to consider.
retriever_weights (List[float]): Weights for ensemble retrieval.
"""
self.llm = llm
self.embedding_chunks_small = embedding_chunks_small
self.embedding_chunks_medium = embedding_chunks_medium
self.docs_index_small = DocIndexer(docs_chunks_small)
self.docs_index_medium = DocIndexer(docs_chunks_medium)
self.first_retrieval_k = first_retrieval_k
self.second_retrieval_k = second_retrieval_k
self.num_windows = num_windows
self.retriever_weights = retriever_weights
def get_retriever(
self,
docs_chunks,
emb_chunks,
emb_filter=None,
k=2,
weights=(0.5, 0.5),
):
"""
Initialize and return a retriever instance with specified parameters.
Args:
docs_chunks: The document chunks for the BM25 retriever.
emb_chunks: The document chunks for the Embedding retriever.
emb_filter: A filter for embedding retriever.
k (int): The number of top documents to return.
weights (list): Weights for ensemble retrieval.
Returns:
MyEnsembleRetriever: An instance of MyEnsembleRetriever.
"""
bm25_retriever = BM25Retriever.from_documents(docs_chunks)
bm25_retriever.k = k
emb_retriever = emb_chunks.as_retriever(
search_kwargs={
"filter": emb_filter,
"k": k,
"search_type": "mmr",
}
)
return MyEnsembleRetriever(
retrievers={"bm25": bm25_retriever, "chroma": emb_retriever},
weights=weights,
)
def find_overlaps(self, doc: List[Document]):
"""
Find overlapping intervals of windows.
Args:
doc (Document): A document object to find overlaps in.
Returns:
list: A list of overlapping intervals.
"""
intervals = []
for item in doc:
intervals.append(
(
item.metadata["large_chunks_idx_lower_bound"],
item.metadata["large_chunks_idx_upper_bound"],
)
)
remaining_intervals, grouped_intervals, centroids = intervals.copy(), [], []
while remaining_intervals:
curr_interval = remaining_intervals.pop(0)
curr_group = [curr_interval]
subset_interval = None
for start, end in remaining_intervals.copy():
for s, e in curr_group:
overlap = set(range(s, e + 1)) & set(range(start, end + 1))
if overlap:
curr_group.append((start, end))
remaining_intervals.remove((start, end))
if set(range(start, end + 1)).issubset(set(range(s, e + 1))):
subset_interval = (start, end)
break
if subset_interval:
centroid = [math.ceil((subset_interval[0] + subset_interval[1]) / 2)]
elif len(curr_group) > 2:
first_overlap = max(
set(range(curr_group[0][0], curr_group[0][1] + 1))
& set(range(curr_group[1][0], curr_group[1][1] + 1))
)
last_overlap_set = set(
range(curr_group[-1][0], curr_group[-1][1] + 1)
) & set(range(curr_group[-2][0], curr_group[-2][1] + 1))
if not last_overlap_set:
last_overlap = first_overlap # Fallback if no overlap
else:
last_overlap = min(last_overlap_set)
step = 1 if first_overlap <= last_overlap else -1
centroid = list(range(first_overlap, last_overlap + step, step))
else:
centroid = [
round(
sum([math.ceil((s + e) / 2) for s, e in curr_group])
/ len(curr_group)
)
]
grouped_intervals.append(
curr_group if len(curr_group) > 1 else curr_group[0]
)
centroids.extend(centroid)
return centroids
def get_filter(self, top_k: int, file_md5: str, doc: List[Document]):
"""
Create a filter for retrievers based on overlapping intervals.
Args:
top_k (int): Number of top intervals to consider.
file_md5 (str): MD5 hash of the file to filter.
doc (List[Document]): List of document objects.
Returns:
tuple: A tuple of containing dictionary filters for DocIndexer and Chroma retrievers.
"""
overlaps = self.find_overlaps(doc)
if len(overlaps) < 1:
raise ValueError("No overlapping intervals found.")
overlaps_k = overlaps[:top_k]
logger.info("windows_at_2nd_retrieval: %s", overlaps_k)
search_dict_docindexer = {"OR": []}
search_dict_chroma = {"$or": []}
for chunk_idx in overlaps_k:
search_dict_docindexer["OR"].append(
{
"large_chunks_idx_lower_bound": (
IndexerOperator.LTE,
chunk_idx,
),
"large_chunks_idx_upper_bound": (
IndexerOperator.GTE,
chunk_idx,
),
"source_md5": (IndexerOperator.EQ, file_md5),
}
)
if len(overlaps_k) == 1:
search_dict_chroma = {
"$and": [
{"large_chunks_idx_lower_bound": {"$lte": overlaps_k[0]}},
{"large_chunks_idx_upper_bound": {"$gte": overlaps_k[0]}},
{"source_md5": {"$eq": file_md5}},
]
}
else:
search_dict_chroma["$or"].append(
{
"$and": [
{"large_chunks_idx_lower_bound": {"$lte": chunk_idx}},
{"large_chunks_idx_upper_bound": {"$gte": chunk_idx}},
{"source_md5": {"$eq": file_md5}},
]
}
)
return search_dict_docindexer, search_dict_chroma
def get_relevant_doc_ids(self, docs: List[Document], query: str):
"""
Get relevant document IDs given a query using an LLM.
Args:
docs (List[Document]): List of document objects to find relevant IDs in.
query (str): The query string.
Returns:
list: A list of relevant document IDs.
"""
snippets = "\n\n\n".join(
[
f"Context {idx}:\n{{{doc.page_content}}}. {{source: {doc.metadata['source']}}}"
for idx, doc in enumerate(docs)
]
)
id_chain = LLMChain(
llm=self.llm,
prompt=prompt_templates.get_docs_selection_template(configs.model_name),
output_key="IDs",
)
ids = id_chain.run({"query": query, "snippets": snippets})
logger.info("relevant doc ids: %s", ids)
pattern = r"\[\s*\d+\s*(?:,\s*\d+\s*)*\]"
match = re.search(pattern, ids)
if match:
return ast.literal_eval(match.group(0))
else:
return []
def get_relevant_documents(
self,
query: str,
num_query: int,
*,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> List[Document]:
"""
Perform multi-stage retrieval to get relevant documents.
Args:
query (str): The query string.
num_query (int): Number of queries.
run_manager (Optional[CallbackManagerForChainRun], optional): Callback manager for chain run.
Returns:
List[Document]: A list of relevant documents.
"""
# ! First retrieval
first_retriever = self.get_retriever(
docs_chunks=self.docs_index_small.documents,
emb_chunks=self.embedding_chunks_small,
emb_filter=None,
k=self.first_retrieval_k,
weights=self.retriever_weights,
)
first = first_retriever.get_relevant_documents(
query, callbacks=run_manager.get_child()
)
for doc in first:
logger.info("----1st retrieval----: %s", doc)
ids_clean = self.get_relevant_doc_ids(first, query)
# ids_clean = [0, 1, 2]
logger.info("relevant cleaned doc ids: %s", ids_clean)
qa_chunks = {} # key is file name, value is a list of relevant documents
# res_chunks = []
if ids_clean and isinstance(ids_clean, list):
source_md5_dict = {}
for ids_c in ids_clean:
if ids_c < len(first):
if ids_c not in source_md5_dict:
source_md5_dict[first[ids_c].metadata["source_md5"]] = [
first[ids_c]
]
# else:
# source_md5_dict[first[ids_c].metadata["source_md5"]].append(
# ids_clean[ids_c]
# )
if len(source_md5_dict) == 0:
source_md5_dict[first[0].metadata["source_md5"]] = [first[0]]
num_docs = len(source_md5_dict.keys())
third_num_k = max(
1,
(
int(
(
configs.max_llm_context
/ (configs.base_chunk_size * configs.chunk_scale)
)
// (num_docs * num_query)
)
),
)
for source_md5, docs in source_md5_dict.items():
logger.info(
"selected_docs_at_1st_retrieval: %s", docs[0].metadata["source"]
)
second_docs_chunks = self.docs_index_small.retrieve_metadata(
{
"source_md5": (IndexerOperator.EQ, source_md5),
}
)
second_retriever = self.get_retriever(
docs_chunks=second_docs_chunks,
emb_chunks=self.embedding_chunks_small,
emb_filter={"source_md5": source_md5},
k=self.second_retrieval_k,
weights=self.retriever_weights,
)
# ! Second retrieval
second = second_retriever.get_relevant_documents(
query, callbacks=run_manager.get_child()
)
for doc in second:
logger.info("----2nd retrieval----: %s", doc)
docs.extend(second)
docindexer_filter, chroma_filter = self.get_filter(
self.num_windows, source_md5, docs
)
third_docs_chunks = self.docs_index_medium.retrieve_metadata(
docindexer_filter
)
third_retriever = self.get_retriever(
docs_chunks=third_docs_chunks,
emb_chunks=self.embedding_chunks_medium,
emb_filter=chroma_filter,
k=third_num_k,
weights=self.retriever_weights,
)
# ! Third retrieval
third_temp = third_retriever.get_relevant_documents(
query, callbacks=run_manager.get_child()
)
third = third_temp[:third_num_k]
# chunks = sorted(third, key=lambda x: x.metadata["medium_chunk_idx"])
for doc in third:
logger.info(
"----3rd retrieval----page_content: %s", [doc.page_content]
)
mtdata = doc.metadata
mtdata["page_content"] = None
logger.info("----3rd retrieval----metadata: %s", mtdata)
file_name = third[0].metadata["source"].split("/")[-1]
if file_name not in qa_chunks:
qa_chunks[file_name] = third
else:
qa_chunks[file_name].extend(third)
return qa_chunks
async def aget_relevant_documents(
self,
query: str,
num_query: int,
*,
run_manager: AsyncCallbackManagerForChainRun,
) -> List[Document]:
"""
Asynchronous version of get_relevant_documents method.
Args:
query (str): The query string.
num_query (int): Number of queries.
run_manager (AsyncCallbackManagerForChainRun): Callback manager for asynchronous chain run.
Returns:
List[Document]: A list of relevant documents.
"""
# ! First retrieval
first_retriever = self.get_retriever(
docs_chunks=self.docs_index_small.documents,
emb_chunks=self.embedding_chunks_small,
emb_filter=None,
k=self.first_retrieval_k,
weights=self.retriever_weights,
)
first = await first_retriever.aget_relevant_documents(
query, callbacks=run_manager.get_child()
)
for doc in first:
logger.info("----1st retrieval----: %s", doc)
ids_clean = self.get_relevant_doc_ids(first, query)
logger.info("relevant doc ids: %s", ids_clean)
qa_chunks = {} # key is file name, value is a list of relevant documents
# res_chunks = []
if ids_clean and isinstance(ids_clean, list):
source_md5_dict = {}
for ids_c in ids_clean:
if ids_c < len(first):
if ids_c not in source_md5_dict:
source_md5_dict[first[ids_c].metadata["source_md5"]] = [
first[ids_c]
]
# else:
# source_md5_dict[first[ids_c].metadata["source_md5"]].append(
# ids_clean[ids_c]
# )
if len(source_md5_dict) == 0:
source_md5_dict[first[0].metadata["source_md5"]] = [first[0]]
num_docs = len(source_md5_dict.keys())
third_num_k = max(
1,
(
int(
(
configs.max_llm_context
/ (configs.base_chunk_size * configs.chunk_scale)
)
// (num_docs * num_query)
)
),
)
for source_md5, docs in source_md5_dict.items():
logger.info(
"selected_docs_at_1st_retrieval: %s", docs[0].metadata["source"]
)
second_docs_chunks = self.docs_index_small.retrieve_metadata(
{
"source_md5": (IndexerOperator.EQ, source_md5),
}
)
second_retriever = self.get_retriever(
docs_chunks=second_docs_chunks,
emb_chunks=self.embedding_chunks_small,
emb_filter={"source_md5": source_md5},
k=self.second_retrieval_k,
weights=self.retriever_weights,
)
# ! Second retrieval
second = await second_retriever.aget_relevant_documents(
query, callbacks=run_manager.get_child()
)
for doc in second:
logger.info("----2nd retrieval----: %s", doc)
docs.extend(second)
docindexer_filter, chroma_filter = self.get_filter(
self.num_windows, source_md5, docs
)
third_docs_chunks = self.docs_index_medium.retrieve_metadata(
docindexer_filter
)
third_retriever = self.get_retriever(
docs_chunks=third_docs_chunks,
emb_chunks=self.embedding_chunks_medium,
emb_filter=chroma_filter,
k=third_num_k,
weights=self.retriever_weights,
)
# ! Third retrieval
third_temp = await third_retriever.aget_relevant_documents(
query, callbacks=run_manager.get_child()
)
third = third_temp[:third_num_k]
# chunks = sorted(third, key=lambda x: x.metadata["medium_chunk_idx"])
for doc in third:
logger.info(
"----3rd retrieval----page_content: %s", [doc.page_content]
)
mtdata = doc.metadata
mtdata["page_content"] = None
logger.info("----3rd retrieval----metadata: %s", mtdata)
file_name = third[0].metadata["source"].split("/")[-1]
if file_name not in qa_chunks:
qa_chunks[file_name] = third
else:
qa_chunks[file_name].extend(third)
return qa_chunks
|