AstroSage / app.py
Tijmen2's picture
Update app.py
ef6cbea verified
raw
history blame
5.61 kB
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import random
# Custom CSS for better styling
custom_css = """
.gradio-container {
background: linear-gradient(to bottom, #1a1a2e, #16213e) !important;
}
.header-text {
text-align: center;
color: #e2e8f0;
font-size: 2.5em;
font-weight: bold;
margin: 1em 0;
text-shadow: 0 0 10px rgba(255, 255, 255, 0.3);
}
.subheader {
text-align: center;
color: #94a3b8;
font-size: 1.2em;
margin-bottom: 2em;
}
.controls-section {
background: rgba(255, 255, 255, 0.05);
padding: 1.5em;
border-radius: 10px;
margin: 1em 0;
}
.model-info {
background: rgba(0, 0, 0, 0.2);
padding: 1em;
border-radius: 8px;
margin-top: 1em;
color: #94a3b8;
}
"""
# Initialize model
model_path = hf_hub_download(
repo_id="AstroMLab/AstroSage-8B-GGUF",
filename="AstroSage-8B-Q8_0.gguf"
)
llm = Llama(
model_path=model_path,
n_ctx=2048,
n_threads=4,
chat_format="llama-3",
seed=42,
f16_kv=True,
logits_all=False,
use_mmap=True,
use_gpu=True
)
# Placeholder responses for when context is empty
GREETING_MESSAGES = [
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]
def get_random_greeting():
return random.choice(GREETING_MESSAGES)
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = llm.create_chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p
)
return response["choices"][0]["message"]["content"]
def regenerate(message, history, system_message, max_tokens, temperature, top_p):
# Remove the last assistant message from history
if history and len(history) > 0:
history = history[:-1]
# Generate a new response
return respond(message, history, system_message, max_tokens, temperature, top_p)
def clear_context():
return [], get_random_greeting()
with gr.Blocks(css=custom_css) as demo:
gr.HTML(
"""
<div class="header-text">🌌 AstroSage-LLAMA-3.1-8B</div>
<div class="subheader">Your AI Guide to the Cosmos</div>
"""
)
chatbot = gr.Chatbot(
value=[[None, get_random_greeting()]],
height=400,
show_label=False,
)
msg = gr.Textbox(
placeholder="Ask about astronomy, astrophysics, or cosmology...",
show_label=False,
)
with gr.Accordion("Advanced Settings", open=False) as advanced_settings:
system_msg = gr.Textbox(
value="You are AstroSage, a highly knowledgeable AI assistant specialized in astronomy, astrophysics, and cosmology. Provide accurate, engaging, and educational responses about space science and the universe.",
label="System Message",
lines=3
)
with gr.Row():
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p"
)
with gr.Row():
clear = gr.Button("🌟 New Chat")
regenerate_btn = gr.Button("πŸ”„ Regenerate")
submit = gr.Button("Send πŸš€", variant="primary")
gr.HTML(
"""
<div class="model-info">
<p>πŸ“š Model: AstroSage-LLAMA-3.1-8B (8-bit Quantized)</p>
<p>πŸ”§ Built with llama.cpp, Gradio, and Python</p>
<p>πŸ’« Specialized in astronomy, astrophysics, and cosmology</p>
</div>
"""
)
# Set up event handlers
msg.submit(
respond,
[msg, chatbot, system_msg, max_tokens, temperature, top_p],
[chatbot],
queue=False
).then(
lambda: "",
None,
[msg],
queue=False
)
submit.click(
respond,
[msg, chatbot, system_msg, max_tokens, temperature, top_p],
[chatbot],
queue=False
).then(
lambda: "",
None,
[msg],
queue=False
)
regenerate_btn.click(
regenerate,
[msg, chatbot, system_msg, max_tokens, temperature, top_p],
[chatbot],
queue=False
)
clear.click(
clear_context,
None,
[chatbot, msg],
queue=False
)
if __name__ == "__main__":
demo.launch()