Spaces:
Running
Running
Mallisetty Siva Mahesh
commited on
Commit
·
c04d620
1
Parent(s):
caa039b
added msme and cinllpin
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ from fastapi import FastAPI, HTTPException, Request
|
|
11 |
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
12 |
from dotenv import load_dotenv
|
13 |
import urllib.parse
|
14 |
-
from utils import doc_processing
|
15 |
|
16 |
# Load .env file
|
17 |
load_dotenv()
|
@@ -143,59 +143,91 @@ for dir_path in process_dirs.values():
|
|
143 |
logging.basicConfig(level=logging.INFO)
|
144 |
|
145 |
|
146 |
-
# Perform Inference with optional S3 upload
|
147 |
def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool):
|
148 |
model_dirs = {
|
149 |
"pan_file": pan_model,
|
150 |
"gst_file": gst_model,
|
151 |
"cheque_file": cheque_model,
|
152 |
}
|
|
|
153 |
try:
|
154 |
inference_results = {}
|
155 |
|
156 |
for doc_type, file_path in file_paths.items():
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
}
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
181 |
response = client.upload_file(
|
182 |
unprocessed_file_path, bucket_name, folder_name, file_name
|
183 |
)
|
184 |
print("The file has been uploaded to S3 bucket", response)
|
185 |
attachment_url = response["url"]
|
186 |
-
|
|
|
|
|
187 |
attachment_url = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
result["detect"] = True
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
return inference_results
|
198 |
-
|
|
|
|
|
199 |
return {"status": "error", "message": "Text extraction failed."}
|
200 |
|
201 |
|
@@ -234,21 +266,31 @@ async def aadhar_ocr(
|
|
234 |
print("file_paths", file_paths)
|
235 |
|
236 |
files = {}
|
237 |
-
for key, value in file_paths.items():
|
238 |
-
name = value.split("/")[-1].split(".")[0]
|
239 |
-
id_type = key.split("_")[0]
|
240 |
-
doc_type = value.split("/")[-1].split(".")[-1]
|
241 |
-
f_path = value
|
242 |
|
243 |
-
|
244 |
-
preprocessing = doc_processing(name, id_type, doc_type, f_path)
|
245 |
-
response = preprocessing.process()
|
246 |
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
# Perform inference
|
254 |
result = perform_inference(files, upload_to_s3)
|
@@ -307,16 +349,30 @@ async def document_ocr_s3(request: Request):
|
|
307 |
logging.info(f"Downloaded files: {list(file_paths.keys())}")
|
308 |
|
309 |
files = {}
|
310 |
-
for key, value in file_paths.items():
|
311 |
-
name = value.split("/")[-1].split(".")[0]
|
312 |
-
id_type = key.split("_")[0]
|
313 |
-
doc_type = value.split("/")[-1].split(".")[-1]
|
314 |
-
f_path = value
|
315 |
-
|
316 |
-
preprocessing = doc_processing(name, id_type, doc_type, f_path)
|
317 |
-
response = preprocessing.process()
|
318 |
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
result = perform_inference(files, upload_to_s3)
|
322 |
|
|
|
11 |
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
12 |
from dotenv import load_dotenv
|
13 |
import urllib.parse
|
14 |
+
from utils import doc_processing, extract_document_number_from_file
|
15 |
|
16 |
# Load .env file
|
17 |
load_dotenv()
|
|
|
143 |
logging.basicConfig(level=logging.INFO)
|
144 |
|
145 |
|
|
|
146 |
def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool):
|
147 |
model_dirs = {
|
148 |
"pan_file": pan_model,
|
149 |
"gst_file": gst_model,
|
150 |
"cheque_file": cheque_model,
|
151 |
}
|
152 |
+
|
153 |
try:
|
154 |
inference_results = {}
|
155 |
|
156 |
for doc_type, file_path in file_paths.items():
|
157 |
+
processed_file_p = file_path.split("&&")[
|
158 |
+
0
|
159 |
+
] # Extracted document number or processed image
|
160 |
+
unprocessed_file_path = file_path.split("&&")[1] # Original file path
|
161 |
+
|
162 |
+
print(f"Processing {doc_type}: {processed_file_p}")
|
163 |
+
|
164 |
+
# Determine the attachment number based on the document type
|
165 |
+
attachment_num = {
|
166 |
+
"pan_file": 2,
|
167 |
+
"gst_file": 4,
|
168 |
+
"msme_file": 5,
|
169 |
+
"cin_llpin_file": 6,
|
170 |
+
"cheque_file": 8,
|
171 |
+
}.get(doc_type, None)
|
172 |
+
|
173 |
+
if attachment_num is None:
|
174 |
+
print(f"Skipping {doc_type}, not recognized.")
|
175 |
+
continue
|
176 |
+
|
177 |
+
# Upload file to S3 if required
|
178 |
+
if upload_to_s3:
|
179 |
+
client = s3_client()
|
180 |
+
bucket_name = "edgekycdocs"
|
181 |
+
folder_name = f"{doc_type.split('_')[0]}docs"
|
182 |
+
file_name = unprocessed_file_path.split("/")[-1].replace(" ", "_")
|
183 |
+
|
184 |
+
try:
|
185 |
response = client.upload_file(
|
186 |
unprocessed_file_path, bucket_name, folder_name, file_name
|
187 |
)
|
188 |
print("The file has been uploaded to S3 bucket", response)
|
189 |
attachment_url = response["url"]
|
190 |
+
print(f"File uploaded to S3: {attachment_url}")
|
191 |
+
except Exception as e:
|
192 |
+
print(f"Failed to upload {file_name} to S3: {e}")
|
193 |
attachment_url = None
|
194 |
+
else:
|
195 |
+
attachment_url = None
|
196 |
+
# If it's an OCR-based extraction (CIN, MSME, LLPIN, PAN, Aadhaar), return the extracted number
|
197 |
+
if doc_type in ["msme_file", "cin_llpin_file", "aadhar_file"]:
|
198 |
+
result = {
|
199 |
+
"attachment_num": processed_file_p, # Extracted CIN, LLPIN, MSME, PAN, or Aadhaar number
|
200 |
+
"attachment_url": attachment_url,
|
201 |
+
"attachment_status": 200,
|
202 |
+
"detect": True,
|
203 |
+
}
|
204 |
+
else:
|
205 |
+
# If the document needs ML model inference (PAN, GST, Cheque)
|
206 |
+
if doc_type in model_dirs:
|
207 |
+
print(
|
208 |
+
f"Running ML inference for {doc_type} using {model_dirs[doc_type]}"
|
209 |
+
)
|
210 |
|
211 |
+
images_path = [processed_file_p]
|
212 |
+
inference_batch = prepare_batch_for_inference(images_path)
|
|
|
213 |
|
214 |
+
context = model_dirs[doc_type]
|
215 |
+
processor = globals()[f"processor_{doc_type.split('_')[0]}"]
|
216 |
+
name = doc_type.split("_")[0]
|
217 |
+
|
218 |
+
result = handle(inference_batch, context, processor, name)
|
219 |
+
result["attachment_url"] = attachment_url
|
220 |
+
result["detect"] = True
|
221 |
+
else:
|
222 |
+
print(f"No model found for {doc_type}, skipping inference.")
|
223 |
+
continue
|
224 |
+
|
225 |
+
inference_results[f"attachment_{attachment_num}"] = result
|
226 |
|
227 |
return inference_results
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
print(f"Error in perform_inference: {e}")
|
231 |
return {"status": "error", "message": "Text extraction failed."}
|
232 |
|
233 |
|
|
|
266 |
print("file_paths", file_paths)
|
267 |
|
268 |
files = {}
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
+
for key, f_path in file_paths.items():
|
|
|
|
|
271 |
|
272 |
+
name = os.path.splitext(os.path.basename(f_path))[0]
|
273 |
+
# Determine id_type: for cin_llpin_file, explicitly set id_type to "cin_llpin"
|
274 |
+
if key == "cin_llpin_file":
|
275 |
+
id_type = "cin_llpin"
|
276 |
+
else:
|
277 |
+
id_type = key.split("_")[0]
|
278 |
+
doc_type = os.path.splitext(f_path)[-1].lstrip(".")
|
279 |
|
280 |
+
if key in ["msme_file", "cin_llpin_file", "aadhar_file"]:
|
281 |
+
extracted_number = extract_document_number_from_file(f_path, id_type)
|
282 |
+
if not extracted_number:
|
283 |
+
logging.error(f"Failed to extract document number from {f_path}")
|
284 |
+
raise HTTPException(
|
285 |
+
status_code=400, detail=f"Invalid document format in {key}"
|
286 |
+
)
|
287 |
+
files[key] = extracted_number + "&&" + f_path
|
288 |
+
print("files", files[key])
|
289 |
+
else:
|
290 |
+
# For other files, use existing preprocessing.
|
291 |
+
preprocessing = doc_processing(name, id_type, doc_type, f_path)
|
292 |
+
response = preprocessing.process()
|
293 |
+
files[key] = response["output_p"] + "&&" + f_path
|
294 |
|
295 |
# Perform inference
|
296 |
result = perform_inference(files, upload_to_s3)
|
|
|
349 |
logging.info(f"Downloaded files: {list(file_paths.keys())}")
|
350 |
|
351 |
files = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
+
for key, f_path in file_paths.items():
|
354 |
+
name = f_path.split("/")[-1].split(".")[0]
|
355 |
+
if key == "cin_llpin_file":
|
356 |
+
id_type = "cin_llpin"
|
357 |
+
else:
|
358 |
+
id_type = key.split("_")[0]
|
359 |
+
# id_type = key.split("_")[0]
|
360 |
+
doc_type = f_path.split("/")[-1].split(".")[-1]
|
361 |
+
|
362 |
+
# For MSME and CIN/LLPIN files, extract document number via OCR and regex
|
363 |
+
if key in ["msme_file", "cin_llpin_file", "aadhar_file"]:
|
364 |
+
extracted_number = extract_document_number_from_file(f_path, id_type)
|
365 |
+
if not extracted_number:
|
366 |
+
logging.error(f"Failed to extract document number from {f_path}")
|
367 |
+
raise HTTPException(
|
368 |
+
status_code=400, detail=f"Invalid document format in {key}"
|
369 |
+
)
|
370 |
+
files[key] = extracted_number + "&&" + f_path
|
371 |
+
else:
|
372 |
+
# For other documents, use the existing ML model preprocessing
|
373 |
+
preprocessing = doc_processing(name, id_type, doc_type, f_path)
|
374 |
+
response = preprocessing.process()
|
375 |
+
files[key] = response["output_p"] + "&&" + f_path
|
376 |
|
377 |
result = perform_inference(files, upload_to_s3)
|
378 |
|
utils.py
CHANGED
@@ -1,71 +1,75 @@
|
|
1 |
import fitz
|
2 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class doc_processing:
|
5 |
|
6 |
def __init__(self, name, id_type, doc_type, f_path):
|
7 |
-
|
8 |
self.name = name
|
9 |
self.id_type = id_type
|
10 |
self.doc_type = doc_type
|
11 |
self.f_path = f_path
|
12 |
# self.o_path = o_path
|
13 |
-
|
14 |
-
|
15 |
def pdf_to_image_scale(self):
|
16 |
pdf_document = fitz.open(self.f_path)
|
17 |
if self.id_type == "gst":
|
18 |
page_num = 2
|
19 |
else:
|
20 |
page_num = 0
|
21 |
-
|
22 |
page = pdf_document.load_page(page_num)
|
23 |
pix = page.get_pixmap() # Render page as a pixmap (image)
|
24 |
-
|
25 |
# Convert pixmap to PIL Image
|
26 |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
27 |
-
|
28 |
original_width, original_height = image.size
|
29 |
-
|
30 |
-
print("original_width",original_width)
|
31 |
-
print("original_height",original_height)
|
32 |
|
|
|
|
|
33 |
|
34 |
new_width = (1000 / original_width) * original_width
|
35 |
new_height = (1000 / original_height) * original_height
|
36 |
-
|
37 |
-
print("new_width",new_width)
|
38 |
-
print("new_height",new_height)
|
39 |
-
# new_width =
|
40 |
-
# new_height =
|
41 |
image.resize((int(new_width), int(new_height)), Image.Resampling.LANCZOS)
|
42 |
-
output_path = "processed_images/{}/{}.jpeg".format(self.id_type,self.name)
|
43 |
image.save(output_path)
|
44 |
-
return
|
45 |
-
|
46 |
|
47 |
def scale_img(self):
|
48 |
-
|
49 |
|
50 |
-
print("path of file",self.f_path)
|
51 |
image = Image.open(self.f_path).convert("RGB")
|
52 |
original_width, original_height = image.size
|
53 |
-
|
54 |
-
print("original_width",original_width)
|
55 |
-
print("original_height",original_height)
|
56 |
|
|
|
|
|
57 |
|
58 |
new_width = (1000 / original_width) * original_width
|
59 |
new_height = (1000 / original_height) * original_height
|
60 |
-
|
61 |
-
print("new_width",new_width)
|
62 |
-
print("new_height",new_height)
|
63 |
-
# new_width =
|
64 |
-
# new_height =
|
65 |
image.resize((int(new_width), int(new_height)), Image.Resampling.LANCZOS)
|
66 |
-
output_path = "processed_images/{}/{}.jpeg".format(self.id_type,self.name)
|
67 |
image.save(output_path)
|
68 |
-
return {"success":200,"output_p":output_path}
|
69 |
|
70 |
def process(self):
|
71 |
if self.doc_type == "pdf":
|
@@ -76,12 +80,95 @@ class doc_processing:
|
|
76 |
return response
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
-
|
82 |
# files = {
|
83 |
# "aadhar_file": "/home/javmulla/model_one/test_images_aadhar/test_two.jpg",
|
84 |
-
# "pan_file": "/home/javmulla/model_one/test_images_pan/6ea33087.jpeg",
|
85 |
# "cheque_file": "/home/javmulla/model_one/test_images_cheque/0f81678a.jpeg",
|
86 |
# "gst_file": "/home/javmulla/model_one/test_images_gst/0a52fbcb_page3_image_0.jpg"
|
87 |
# }
|
@@ -89,7 +176,7 @@ class doc_processing:
|
|
89 |
|
90 |
# files = {
|
91 |
# "aadhar_file": "/home/javmulla/model_one/test_images_aadhar/test_two.jpg",
|
92 |
-
# "pan_file": "/home/javmulla/model_one/test_images_pan/6ea33087.jpeg",
|
93 |
# "cheque_file": "/home/javmulla/model_one/test_images_cheque/0f81678a.jpeg",
|
94 |
# "gst_file": "test_Images_folder/gst/e.pdf"
|
95 |
# }
|
@@ -102,11 +189,6 @@ class doc_processing:
|
|
102 |
# preprocessing = doc_processing(name,id_type,doc_type,f_path)
|
103 |
# response = preprocessing.process()
|
104 |
# print("response",response)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# id_type, doc_type, f_path
|
111 |
-
|
112 |
-
|
|
|
1 |
import fitz
|
2 |
from PIL import Image
|
3 |
+
import re
|
4 |
+
import io
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
import shutil
|
8 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
9 |
+
from google.cloud import vision
|
10 |
+
from pdf2image import convert_from_path
|
11 |
+
|
12 |
|
13 |
class doc_processing:
|
14 |
|
15 |
def __init__(self, name, id_type, doc_type, f_path):
|
16 |
+
|
17 |
self.name = name
|
18 |
self.id_type = id_type
|
19 |
self.doc_type = doc_type
|
20 |
self.f_path = f_path
|
21 |
# self.o_path = o_path
|
22 |
+
|
|
|
23 |
def pdf_to_image_scale(self):
|
24 |
pdf_document = fitz.open(self.f_path)
|
25 |
if self.id_type == "gst":
|
26 |
page_num = 2
|
27 |
else:
|
28 |
page_num = 0
|
29 |
+
|
30 |
page = pdf_document.load_page(page_num)
|
31 |
pix = page.get_pixmap() # Render page as a pixmap (image)
|
32 |
+
|
33 |
# Convert pixmap to PIL Image
|
34 |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
35 |
+
|
36 |
original_width, original_height = image.size
|
|
|
|
|
|
|
37 |
|
38 |
+
print("original_width", original_width)
|
39 |
+
print("original_height", original_height)
|
40 |
|
41 |
new_width = (1000 / original_width) * original_width
|
42 |
new_height = (1000 / original_height) * original_height
|
43 |
+
|
44 |
+
print("new_width", new_width)
|
45 |
+
print("new_height", new_height)
|
46 |
+
# new_width =
|
47 |
+
# new_height =
|
48 |
image.resize((int(new_width), int(new_height)), Image.Resampling.LANCZOS)
|
49 |
+
output_path = "processed_images/{}/{}.jpeg".format(self.id_type, self.name)
|
50 |
image.save(output_path)
|
51 |
+
return {"success": 200, "output_p": output_path}
|
|
|
52 |
|
53 |
def scale_img(self):
|
|
|
54 |
|
55 |
+
print("path of file", self.f_path)
|
56 |
image = Image.open(self.f_path).convert("RGB")
|
57 |
original_width, original_height = image.size
|
|
|
|
|
|
|
58 |
|
59 |
+
print("original_width", original_width)
|
60 |
+
print("original_height", original_height)
|
61 |
|
62 |
new_width = (1000 / original_width) * original_width
|
63 |
new_height = (1000 / original_height) * original_height
|
64 |
+
|
65 |
+
print("new_width", new_width)
|
66 |
+
print("new_height", new_height)
|
67 |
+
# new_width =
|
68 |
+
# new_height =
|
69 |
image.resize((int(new_width), int(new_height)), Image.Resampling.LANCZOS)
|
70 |
+
output_path = "processed_images/{}/{}.jpeg".format(self.id_type, self.name)
|
71 |
image.save(output_path)
|
72 |
+
return {"success": 200, "output_p": output_path}
|
73 |
|
74 |
def process(self):
|
75 |
if self.doc_type == "pdf":
|
|
|
80 |
return response
|
81 |
|
82 |
|
83 |
+
from google.cloud import vision
|
84 |
+
|
85 |
+
vision_client = vision.ImageAnnotatorClient()
|
86 |
+
|
87 |
+
|
88 |
+
def extract_document_number(ocr_text: str, id_type: str) -> str:
|
89 |
+
"""
|
90 |
+
Searches the OCR text for a valid document number based on regex patterns.
|
91 |
+
Checks for CIN, then MSME, and finally LLPIN.
|
92 |
+
"""
|
93 |
+
patterns = {
|
94 |
+
"cin": re.compile(r"([LUu]{1}[0-9]{5}[A-Za-z]{2}[0-9]{4}[A-Za-z]{3}[0-9]{6})"),
|
95 |
+
"msme": re.compile(r"(UDYAM-[A-Z]{2}-\d{2}-\d{7})"),
|
96 |
+
"llpin": re.compile(r"([A-Z]{3}-[0-9]{4})"),
|
97 |
+
"pan": re.compile(r"^[A-Z]{3}[PCHFTBALJGT][A-Z][\d]{4}[A-Z]$"),
|
98 |
+
"aadhaar": re.compile(r"^\d{12}$"),
|
99 |
+
}
|
100 |
+
|
101 |
+
if id_type == "cin_llpin":
|
102 |
+
# Try CIN first
|
103 |
+
match = patterns["cin"].search(ocr_text)
|
104 |
+
if match:
|
105 |
+
return match.group(0)
|
106 |
+
# If CIN not found, try LLPIN
|
107 |
+
match = patterns["llpin"].search(ocr_text)
|
108 |
+
if match:
|
109 |
+
return match.group(0)
|
110 |
+
elif id_type in patterns:
|
111 |
+
match = patterns[id_type].search(ocr_text)
|
112 |
+
if match:
|
113 |
+
return match.group(0)
|
114 |
+
|
115 |
+
return None
|
116 |
+
|
117 |
+
|
118 |
+
def run_google_vision(file_content: bytes) -> str:
|
119 |
+
"""
|
120 |
+
Uses Google Vision OCR to extract text from binary file content.
|
121 |
+
"""
|
122 |
+
image = vision.Image(content=file_content)
|
123 |
+
response = vision_client.text_detection(image=image)
|
124 |
+
texts = response.text_annotations
|
125 |
+
if texts:
|
126 |
+
# The first annotation contains the complete detected text
|
127 |
+
return texts[0].description
|
128 |
+
return ""
|
129 |
+
|
130 |
+
|
131 |
+
def extract_text_from_file(file_path: str) -> str:
|
132 |
+
"""
|
133 |
+
Reads the file from file_path. If it's a PDF, converts only the first page to an image,
|
134 |
+
then runs OCR using Google Vision.
|
135 |
+
"""
|
136 |
+
if file_path.lower().endswith(".pdf"):
|
137 |
+
try:
|
138 |
+
# Open the PDF file using PyMuPDF (fitz)
|
139 |
+
pdf_document = fitz.open(file_path)
|
140 |
+
page = pdf_document.load_page(0) # Load the first page
|
141 |
+
pix = page.get_pixmap() # Render page as an image
|
142 |
+
|
143 |
+
# Convert pixmap to PIL Image
|
144 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
145 |
+
|
146 |
+
# Convert image to bytes for OCR
|
147 |
+
img_byte_arr = io.BytesIO()
|
148 |
+
image.save(img_byte_arr, format="JPEG")
|
149 |
+
file_content = img_byte_arr.getvalue()
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
logging.error(f"Error converting PDF to image: {e}")
|
153 |
+
return ""
|
154 |
+
else:
|
155 |
+
with open(file_path, "rb") as f:
|
156 |
+
file_content = f.read()
|
157 |
+
|
158 |
+
return run_google_vision(file_content)
|
159 |
+
|
160 |
+
|
161 |
+
def extract_document_number_from_file(file_path: str, id_type: str) -> str:
|
162 |
+
"""
|
163 |
+
Extracts the document number (CIN, MSME, or LLPIN) from the file at file_path.
|
164 |
+
"""
|
165 |
+
ocr_text = extract_text_from_file(file_path)
|
166 |
+
return extract_document_number(ocr_text, id_type)
|
167 |
|
168 |
|
|
|
169 |
# files = {
|
170 |
# "aadhar_file": "/home/javmulla/model_one/test_images_aadhar/test_two.jpg",
|
171 |
+
# "pan_file": "/home/javmulla/model_one/test_images_pan/6ea33087.jpeg",
|
172 |
# "cheque_file": "/home/javmulla/model_one/test_images_cheque/0f81678a.jpeg",
|
173 |
# "gst_file": "/home/javmulla/model_one/test_images_gst/0a52fbcb_page3_image_0.jpg"
|
174 |
# }
|
|
|
176 |
|
177 |
# files = {
|
178 |
# "aadhar_file": "/home/javmulla/model_one/test_images_aadhar/test_two.jpg",
|
179 |
+
# "pan_file": "/home/javmulla/model_one/test_images_pan/6ea33087.jpeg",
|
180 |
# "cheque_file": "/home/javmulla/model_one/test_images_cheque/0f81678a.jpeg",
|
181 |
# "gst_file": "test_Images_folder/gst/e.pdf"
|
182 |
# }
|
|
|
189 |
# preprocessing = doc_processing(name,id_type,doc_type,f_path)
|
190 |
# response = preprocessing.process()
|
191 |
# print("response",response)
|
192 |
+
|
193 |
+
|
194 |
+
# id_type, doc_type, f_path
|
|
|
|
|
|
|
|
|
|