File size: 25,561 Bytes
e51d1a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
# Dependencies: gradio, fire, langchain, openai, numpy, ffmpeg, moviepy
# API Reference: https://www.gradio.app/docs/,
# https://github.com/zhayujie/chatgpt-on-wechat, https://docs.link-ai.tech/platform/api, https://docs.link-ai.tech/api#/
# Description: This file contains the code to run the gradio app for the movie generator.
#
#
#
# 参考链接: https://zhuanlan.zhihu.com/p/684798694
#
#
####################################################################################################
import gradio as gr
#import fire
from gradio_client import Client, file
import numpy as np
from langchain.chat_models import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage
from openai import OpenAI
import os
import moviepy.editor as mppyth
from moviepy.editor import *
# from movie_generator.agi.suno.suno import Suno
import requests
import ollama
from ollama import chat
from ollama import ChatResponse
# ollama.pull("deepseek-r1:1.5b")
# print( 'ollama result:',ollama.list())
# response: ChatResponse = chat(model='deepseek-r1:1.5b', messages=[
# {
# 'role': 'user',
# 'content': 'Why is the sky blue?',
# },
# ])
# print(response['message']['content'])
# # or access fields directly from the response object
# print(response.message.content)
def call_LLM(inputs, prompts= '你是一个时尚服装行业的专家, 请回答下面问题:', model_version = 'Qwen'):
inputs = prompts + ' ' + inputs
if model_version=="Qwen":
from openai import OpenAI
model_id = 'Qwen/Qwen2.5-3B-Instruct-GGUF'
client = OpenAI(
base_url='https://ms-fc-2ea3820b-8c19.api-inference.modelscope.cn/v1',
api_key='e37bfdad-0f6a-46c2-a7bf-f9dc365967e3'
)
response=client.chat.completions.create(
model=model_id,
messages=[{"role":"user", "content":inputs}],
stream=True
)
res= []
for chunk in response:
# print(chunk.choices[0].delta.content, end='', flush=True)
res.append(chunk.choices[0].delta.content)
return "".join(res)
elif model_version in ['deepseek-r1:1.5b', 'llama3.2:latest']:
# model= 'deepseek-r1:1.5b'
# model = 'llama3.2:latest'
response: ChatResponse = chat(model= model_version, messages=[
{
'role': 'user',
'content': prompts + " " + inputs,
},
])
return response['message']['content']
else:
return "LLM version is not supported yet."
import os
class GradioApp:
def __init__(self,config=None):
#config with info of
# model version
# prompts
#others
self.config=config
# self.image_dir = "/mnt/d/workspace/projects/Project_TextImage_Generator/examples"
self.image_dir = "../examples"
self.model_dir = os.path.join(self.image_dir, "models")
self.clothes_dir = os.path.join(self.image_dir, "clothes")
self.reference_dir = os.path.join(self.image_dir, "references")
self.model_files = [os.path.join(self.model_dir, f) for f in os.listdir(self.model_dir)]
self.clothes_files = [os.path.join(self.clothes_dir, f) for f in os.listdir(self.clothes_dir)]
self.reference_files = [os.path.join(self.reference_dir, f) for f in os.listdir(self.reference_dir)]
pass
def test_image_func(self, input_image, filter_mode='sepia'):
def filter_image(input_image, filter_mode='sepia'):
def sepia(input_img):
sepia_filter = np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
])
sepia_img = input_img.dot(sepia_filter.T)
sepia_img /= sepia_img.max()
return sepia_img
def grayscale(input_img):
input_img = np.mean(input_img, axis=2) / np.max(input_img)
return input_img
if filter_mode == 'sepia':
return sepia(input_image)
elif filter_mode == 'grayscale':
return grayscale(input_image)
else:
return input_image
res = f"Got image from image input: {input_image}"
filtered_image = filter_image(input_image, filter_mode)
return res, filtered_image
def dress_up_func(self, model_images, cloths_images, prompts, similarity):
# 请求GPT response
return "dress_up_func output",[(model_images, "模特"), (cloths_images, "衣服")]*5
def update_model_func(self, model_images, cloths_images, prompts, similarity):
# 请求GPT response
return "update_model_func output", [(model_images, "模特"), (cloths_images, "衣服")]*5
def image_module(self, mode='dress_up', title='image_module', desc=''):
if mode == 'dress_up':
# 模特试衣
func = self.dress_up_func
elif mode == 'update_model':
# 更新模特
func = self.update_model_func
else:
func = self.dress_up_func
examples = []
for i, (c, m) in enumerate( zip(self.clothes_files, self.model_files) ):
examples.append([c, m, 'sepia', 0.6] )
comp = gr.Interface(
fn= func,
inputs=[gr.Image(label='衣服', scale=1, height=300),
gr.Image(label='模特',scale=1, height=300),
gr.Dropdown(['sepia', 'grayscale']),
gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")],
outputs=[gr.Textbox(label="文本输出"),
gr.Gallery(label='图片展示',height='auto',columns=3)
],
title=title,
description=desc,
theme="huggingface",
examples=examples,
)
return comp
def image_module_v2(self, mode='dress_up', title='image_module', desc=''):
def upload_file(files, current_files):
file_paths = current_files + [file.name for file in files]
return file_paths
def gen_images(clothes_img, model_img):
new_images = []
#call LLM/SD here
new_images.append(clothes_img)
new_images.append(model_img)
return new_images
def clear_images():
return []
def slider_func(val):
print("slider value: ", val)
if mode == 'dress_up':
# 模特试衣
func = self.dress_up_func
elif mode == 'update_model':
# 更新模特
func = self.update_model_func
else:
func = self.dress_up_func
with gr.Blocks() as demo:
# first row
with gr.Row():
# first col -> input column
with gr.Column():
model_image=gr.Image(label="模特图片",type='pil', height=None, width=None)
clothes_image=gr.Image(label="衣服图片",type='pil', height=None, width=None)
upload_button = gr.UploadButton("选择图片上传 (Upload Photos)", file_types=["image"], file_count="multiple")
generate_img_button = gr.Button("生成图片")
slider = gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")
clear_button = gr.Button("清空图片 (Clear Photos)")
# analyze_button = gr.Button("显示图片信息 (Show Image Info)")
input_image_gallery = gr.Gallery(type='pil', label='输入图片列表 (Photos)', height=250, columns=4, visible=True)
# second col-> output column
with gr.Column():
image_gallery = gr.Gallery(type='pil', label='图片列表 (Photos)', height=250, columns=4, visible=True)
# user_images = gr.State([])
# upload_button.upload(upload_file, inputs=[upload_button, user_images], outputs=image_gallery)
slider.input(fn=slider_func)
generate_img_button.click(gen_images,inputs=[clothes_image, model_image], outputs= image_gallery)
clear_button.click(fn=clear_images, inputs=None, outputs=image_gallery)
# analyze_button.click(get_image_info, inputs=image_gallery, outputs=analysis_output)
return demo
def gen_text(self,inputs, LLM_version='Qwen'):
# 设置前置prompt做限制
prompts = "你是一个时尚服装行业的专家, 请回答下面问题,只罗列答案不要返回多余的词:"
# model= 'deepseek-r1:1.5b'
# return call_LLM(inputs,prompts, model_version='llama3.2:latest')
return call_LLM(inputs,prompts, model_version=LLM_version)
def text_module(self, title='文本生成', desc="AI生成关键词"):
comp = gr.Interface(
fn= self.gen_text,
inputs=[gr.Textbox(label="文本输入"), gr.Dropdown(['deepseek-r1:1.5b', 'llama3.2:latest','Qwen'], label='模型选择')],
outputs=[gr.Textbox(label="结果输出")],
title=title,
description=desc,
theme="huggingface",
examples=[
["列出2024年最受欢迎的10个衣服品牌","llama3.2:latest"],
["哪些款式的女装比较潮流, 请列出10个女装品类","Qwen"],
["随机生成10个衣服类目并列出来","Qwen"]],
cache_examples=True,
)
return comp
def generate_interface(self,):
tab_interface_ls = {}
# module 1: 生词
tab_interface_ls['AI生词'] = self.text_module()
# module 2: 服装上身
tab_interface_ls['服装搭配'] = self.image_module('dress_up', title="服装搭配")
# module 3: 换模特
tab_interface_ls['更换模特'] = self.image_module('update_model', title="更换模特")
comp = gr.TabbedInterface(
list(tab_interface_ls.values()), list(tab_interface_ls.keys())
)
return comp
def main():
print(f"Runing Gradio APP")
component = GradioApp()
component.generate_interface().launch(share=True)
if __name__ == "__main__":
main()
# class GradioUnitTest():
# def __init__(self):
# api_key = "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"
# # "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"
# os.environ["OPENAI_API_KEY"] = api_key
# self.llm_model = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
# # self.llm_model= None
# self.client = OpenAI(api_key=api_key)
# cur_path =os.getcwd()
# root_path = '/'.join(cur_path.split("/")[:-2])
# suno_result_path = os.path.join(root_path,'examples','suno_musics')
# # self.suno = Suno(result_path=suno_result_path)
# self.suno= None
# pass
# def test_text(self, input_text, mode = 'count'):
# def process_test( _text, mode = 'count'):
# def count_words(text):
# words = text.split(" ")
# res_dict = {}
# for word in words:
# if word in res_dict:
# res_dict[word] += 1
# else:
# res_dict[word] = 1
# res = "\n".join([f"word: {key}, count: {value}" for key, value in res_dict.items()])
# return res
# def reverse_text(text):
# return text[::-1]
# if mode == 'count':
# return count_words(_text)
# return reverse_text(_text)
# res = f"Got text from textbox: {input_text}"
# return res, process_test(input_text, mode)
# # return res, count_words(input_text)
# def test_image(self, input_image, filter_mode='sepia'):
# def filter_image(input_image, filter_mode='sepia'):
# def sepia(input_img):
# sepia_filter = np.array([
# [0.393, 0.769, 0.189],
# [0.349, 0.686, 0.168],
# [0.272, 0.534, 0.131]
# ])
# sepia_img = input_img.dot(sepia_filter.T)
# sepia_img /= sepia_img.max()
# return sepia_img
# def grayscale(input_img):
# input_img = np.mean(input_img, axis=2) / np.max(input_img)
# return input_img
# if filter_mode == 'sepia':
# return sepia(input_image)
# elif filter_mode == 'grayscale':
# return grayscale(input_image)
# else:
# return input_image
# res = f"Got image from image input: {input_image}"
# filtered_image = filter_image(input_image, filter_mode)
# return res, filtered_image
# def test_audio(self, input_audio, filter_mode='echo', prompt='', checkbox_ls=[]):
# def process_audio(input_audio, filter_mode='echo'):
# print("input_audio shape: ", input_audio[1].shape, input_audio)
# def echo(input_audio):
# aud = np.concatenate([input_audio[1], input_audio[1]], axis=0)
# return (input_audio[0], aud)
# def reverse(input_audio):
# return (input_audio[0], input_audio[1][::-1])
# if filter_mode == 'echo':
# res_audio = echo(input_audio)
# elif filter_mode == 'reverse':
# res_audio = reverse(input_audio)
# else:
# res_audio = input_audio
# return res_audio
# print("checkbox_ls: ", checkbox_ls)
# res = f"Got audio from audio input: {input_audio}"
# wait_audio = 'wait_audio' in checkbox_ls
# make_instrumental = 'make_instrumental' in checkbox_ls
# if checkbox_ls != []:
# print('checlbox_ls: ', checkbox_ls)
# generated_audio_path=''
# if prompt != '':
# music_paths = self.test_music_generation(prompt, make_instrumental, wait_audio)
# generated_audio_path = '\n'.join(music_paths)
# res = f"Got audio from suno: {generated_audio_path}"
# processed_audio = process_audio(input_audio, filter_mode)
# return res, processed_audio, generated_audio_path
# def test_video(self, input_video, filter_mode='flip'):
# def process_video(input_video, filter_mode='flip'):
# print("input_video data: ", input_video)
# def clip(input_video):
# clip1 = VideoFileClip(input_video)
# clip2 = VideoFileClip(input_video).subclip(2,3)
# clip3 = VideoFileClip(input_video)
# final_clip = concatenate_videoclips([clip1,clip2,clip3])
# output_video = "final_clip.mp4"
# final_clip.write_videofile(output_video)
# return output_video
# def flip(input_video):
# return np.flip(input_video, axis=1)
# def rotate(input_video):
# return np.rot90(input_video)
# if filter_mode == 'clip':
# return clip(input_video)
# elif filter_mode == 'flip':
# return flip(input_video)
# elif filter_mode == 'rotate':
# return rotate(input_video)
# else:
# return input_video
# res = f"Got video from video input: {input_video}"
# processed_video = process_video(input_video, filter_mode)
# return res, processed_video
# def test_chatbot(self, input_text, history):
# history_langchain_format =[]
# for human, ai in history:
# history_langchain_format.append(HumanMessage(human))
# history_langchain_format.append(AIMessage(ai))
# history_langchain_format.append(content=input_text)
# llm_response = self.llm_model(history_langchain_format)
# return llm_response.content
# def predict(self, message, history):
# history_openai_format = []
# for human, assistant in history:
# history_openai_format.append({"role": "user", "content": human })
# history_openai_format.append({"role": "assistant", "content":assistant})
# history_openai_format.append({"role": "user", "content": message})
# response = self.client.chat.completions.create(model='gpt-3.5-turbo',
# messages= history_openai_format,
# temperature=1.0,
# stream=True)
# partial_message = ""
# for chunk in response:
# if chunk.choices[0].delta.content is not None:
# partial_message = partial_message + chunk.choices[0].delta.content
# yield partial_message
# def predict_v2(self, message, history):
# url = "https://api.link-ai.chat/v1/chat/completions"
# headers = {
# 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
# 'Content-Type': 'application/json'
# }
# history_openai_format = []
# for human, assistant in history:
# history_openai_format.append({"role": "user", "content": human })
# history_openai_format.append({"role": "assistant", "content":assistant})
# history_openai_format.append({"role": "user", "content": message})
# data = {
# "app_code": "default",
# "messages": history_openai_format,
# }
# response = requests.post(url, headers=headers, json=data).json()
# partial_message = ""
# for chunk in response['choices']:
# if chunk['message']["content"] is not None:
# partial_message = partial_message + chunk['message']["content"]
# yield partial_message
# def predict_v3(self, message, history):
# url = "https://api.link-ai.chat/v1/chat/completions"
# headers = {
# 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
# 'Content-Type': 'application/json'
# }
# history_openai_format = []
# for human, assistant in history:
# history_openai_format.append({"role": "user", "content": human })
# history_openai_format.append({"role": "assistant", "content":assistant})
# history_openai_format.append({"role": "user", "content": message})
# data = {
# "app_code": "default",
# "messages": history_openai_format,
# }
# response = requests.post(url, headers=headers, json=data).json()
# partial_message = ""
# for chunk in response['choices']:
# if chunk['message']["content"] is not None:
# partial_message = partial_message + chunk['message']["content"]
# yield partial_message
# def test_music_generation(self, prompt, make_instrumental=False, wait_audio=False):
# request = {
# "prompt": prompt,
# "make_instrumental": make_instrumental,
# "wait_audio": wait_audio
# }
# # music_ls = self.suno.generate_music(request)
# music_ls = []
# return music_ls
# def run_test(self, mode='text'):
# tab_interface_ls = {}
# if mode == 'text' or mode == 'mix':
# comp = gr.Interface(
# fn= self.test_text,
# inputs=['textbox', gr.Dropdown(['count', 'reverse'])],
# outputs=["textbox", "textbox"],
# title="test text module",
# description="test text.",
# theme="huggingface",
# examples=[
# ["A group of friends go on a road trip to find a hidden treasure."],
# ["A scientist discovers a way to travel through time."],
# ["A group of survivors try to escape a zombie apocalypse."],
# ],
# )
# tab_interface_ls['Text Ops'] = comp
# if mode == 'text':
# return comp
# if mode == 'image' or mode == 'mix':
# # https://www.gradio.app/guides/the-interface-class
# comp = gr.Interface(
# fn= self.test_image,
# inputs=['image', gr.Dropdown(['sepia', 'grayscale'])],
# outputs=["textbox",'image'],
# title="test image preprocess Module",
# description="test text.",
# theme="huggingface",
# examples=[
# ["/mnt/c/Users/wwk/Pictures/OIP.jpg", "sepia"],
# ],
# )
# tab_interface_ls['Image Ops'] = comp
# if mode == 'image':
# return comp
# if mode == 'audio' or mode == 'mix':
# comp = gr.Interface(
# fn= self.test_audio,
# inputs=['audio', gr.Dropdown(['echo', 'reverse']), 'textbox', gr.CheckboxGroup([ 'make_instrumental' ,'wait_audio'], label="Suno options", info="make_instrumental<bool>, wait_audio:<bool>") ],
# outputs=["textbox", 'audio'],
# title="test audio preprocess Module",
# description="test audio.",
# theme="huggingface",
# examples=[
# ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "echo"],
# ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "reverse"],
# ],
# )
# tab_interface_ls['Audio Ops'] = comp
# if mode == 'audio':
# return comp
# if mode == 'video' or mode == 'mix':
# comp = gr.Interface(
# fn= self.test_video,
# inputs= [ 'video', gr.Dropdown(['clip', 'rotate'])],
# outputs=["textbox", 'video'],
# title="test video preprocess Module",
# description="test video.",
# theme="huggingface",
# examples=[
# ["/mnt/d/workspace/projects/movie_generator/examples/video/2月12日.mp4", "clip"],
# ],
# )
# tab_interface_ls['Video Ops'] = comp
# if mode == 'video':
# return comp
# if mode == 'chat' or mode == 'mix':
# # https://www.gradio.app/guides/creating-a-custom-chatbot-with-blocks
# # comp = gr.ChatInterface(self.test_chatbot)
# comp = gr.ChatInterface(self.predict_v2)
# tab_interface_ls['ChatBot'] = comp
# if mode == 'chat':
# return comp
# if mode == 'mix':
# # mix mode, use radio button to select the mode
# comp = gr.TabbedInterface(
# list(tab_interface_ls.values()), list(tab_interface_ls.keys())
# )
# return comp
# else:
# def flip_text(x):
# return x[::-1]
# def flip_image(x):
# return np.fliplr(x)
# with gr.Blocks() as comp:
# gr.Markdown("Flip text or image files using this demo.")
# with gr.Tab("Flip Text"):
# text_input = gr.Textbox()
# text_output = gr.Textbox()
# text_button = gr.Button("Flip")
# with gr.Tab("Flip Image"):
# with gr.Row():
# image_input = gr.Image()
# image_output = gr.Image()
# image_button = gr.Button("Flip")
# with gr.Accordion("Open for More!", open=False):
# gr.Markdown("Look at me...")
# temp_slider = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.1,
# step=0.1,
# interactive=True,
# label="Slide me",
# )
# temp_slider.change(lambda x: x, [temp_slider])
# text_button.click(flip_text, inputs=text_input, outputs=text_output)
# image_button.click(flip_image, inputs=image_input, outputs=image_output)
# return comp
|