Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from transformers import pipeline | |
from PIL import Image | |
import tempfile | |
from pathlib import Path | |
import secrets | |
# Initialising huggingface pipelines | |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
math_reasoning = pipeline("text2text-generation", model="google/flan-t5-large") | |
# Helper function to process images | |
def process_image(image, should_convert=False): | |
''' | |
Saves an uploaded image and utilises image-to-text pipeline for math-related descriptions | |
:param image: | |
:param should_convert: | |
:return: pipeline's output | |
''' | |
# creating a temporary directory for saving images | |
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio") | |
os.makedirs(uploaded_file_dir, exist_ok=True) | |
# Save the uploaded image as a temporary file | |
name = f"tmp{secrets.token_hex(8)}.jpg" | |
filename = os.path.join(uploaded_file_dir, name) | |
if should_convert: | |
# Converts image into RGB format | |
new_img = Image.new("RGB", size=(image.height, image.width), color=(255, 255, 255)) | |
new_img.paste(image, (0, 0), mask=image) | |
image = new_img | |
image.save(filename) | |
# Generate text description of the image | |
description = image_to_text(Image.open(filename))[0]['generated_text'] | |
# Clean up file | |
os.remove(filename) | |
return description | |
def get_math_response(image_description, user_question): | |
''' | |
Generates a math related response based upon image description and user's question | |
:param image_description: | |
:param user_question: | |
''' | |
prompt = "" | |
if image_description: | |
prompt += f"Image Description :{image_description}\n" | |
if user_question: | |
prompt += f"User question :{user_question}\n" | |
else: | |
return "Please provide a valid description." | |
# Generate the response using the math_reasoning pipeline | |
response = math_reasoning(prompt, max_length=512)[0]['generated_text'] | |
return response | |
# Combined chatbot logic | |
def math_chatbot(image, sketchpad, question, state): | |
current_tab_index = state['tab_index'] | |
image_description = None | |
# Handle image upload | |
if current_tab_index == 0: | |
if image is not None: | |
image_description = process_image(image, ) | |
# Handle sketchpad input | |
elif current_tab_index == 1: | |
if sketchpad and sketchpad['composite']: | |
image_description = process_image(sketchpad['composite'], should_convert=True) | |
return get_math_response(image_description, question) | |
def tabs_select(e: gr.SelectData, _state): | |
_state["tab_index"] = e.index | |
css = """ | |
#qwen-md .katex-display { display: inline; } | |
#qwen-md .katex-display>.katex { display: inline; } | |
#qwen-md .katex-display>.katex>.katex-html { display: inline; } | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("""\ | |
<p align="center"><img src="https://huggingface.co/front/assets/huggingface_logo.svg" style="height: 60px"/><p>""" | |
"""<center><font size=8>π Math Reasoning Chatbot</center>""" | |
"""\ | |
<center><font size=3>This demo uses Hugging Face models for OCR and mathematical reasoning. You can input images or text-based questions.</center>""" | |
) | |
state = gr.State({"tab_index": 0}) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs() as input_tabs: | |
with gr.Tab("Upload"): | |
input_image = gr.Image(type="pil", label="Upload"), | |
with gr.Tab("Sketch"): | |
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False) | |
input_tabs.select(fn=tabs_select, inputs=[state]) | |
input_text = gr.Textbox(label="input your question") | |
with gr.Row(): | |
with gr.Column(): | |
clear_btn = gr.ClearButton( | |
[*input_image, input_sketchpad, input_text]) | |
with gr.Column(): | |
submit_btn = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
output_md = gr.Markdown(label="answer", | |
latex_delimiters=[{ | |
"left": "\\(", | |
"right": "\\)", | |
"display": True | |
}, { | |
"left": "\\begin\{equation\}", | |
"right": "\\end\{equation\}", | |
"display": True | |
}, { | |
"left": "\\begin\{align\}", | |
"right": "\\end\{align\}", | |
"display": True | |
}, { | |
"left": "\\begin\{alignat\}", | |
"right": "\\end\{alignat\}", | |
"display": True | |
}, { | |
"left": "\\begin\{gather\}", | |
"right": "\\end\{gather\}", | |
"display": True | |
}, { | |
"left": "\\begin\{CD\}", | |
"right": "\\end\{CD\}", | |
"display": True | |
}, { | |
"left": "\\[", | |
"right": "\\]", | |
"display": True | |
}], | |
elem_id="qwen-md") | |
submit_btn.click( | |
fn=math_chat_bot, | |
inputs=[*input_image, input_sketchpad, input_text, state], | |
outputs=output_md) | |
demo.launch() |