Ayush0804 commited on
Commit
fdb9c67
·
verified ·
1 Parent(s): 958f56e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -65
app.py CHANGED
@@ -1,118 +1,137 @@
1
  import gradio as gr
2
  import os
3
- from transformers import pipeline
4
- from PIL import Image
5
  import tempfile
6
  from pathlib import Path
7
  import secrets
 
 
 
8
 
9
- # Initialize Hugging Face pipelines
10
- image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
11
- math_reasoning = pipeline("text2text-generation", model="google/flan-t5-large")
12
 
13
- # Helper function to process image
14
- def process_image(image, should_convert=False):
15
- """
16
- Saves an uploaded image and extracts math-related descriptions using the image-to-text pipeline.
17
- """
18
- # Create temporary directory for saving images
 
 
19
  uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
20
  Path(tempfile.gettempdir()) / "gradio"
21
  )
22
  os.makedirs(uploaded_file_dir, exist_ok=True)
23
 
24
- # Save the uploaded image as a temporary file
25
- name = f"tmp{secrets.token_hex(8)}.jpg"
26
  filename = os.path.join(uploaded_file_dir, name)
27
-
28
- if should_convert:
29
- # Convert image to RGB if required
30
  new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
31
  new_img.paste(image, (0, 0), mask=image)
32
  image = new_img
33
-
34
  image.save(filename)
35
 
36
- # Generate text description of the image
37
- description = image_to_text(Image.open(filename))[0]['generated_text']
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- # Clean up temporary file
40
  os.remove(filename)
41
- return description
 
42
 
43
- # Function to handle math reasoning based on question and image description
44
  def get_math_response(image_description, user_question):
45
- """
46
- Generates a math-related response using the image description and user question.
47
- """
48
- prompt = ""
49
- if image_description:
50
- prompt += f"Image description: {image_description}\n"
51
- if user_question:
52
- prompt += f"User question: {user_question}\n"
53
  else:
54
- return "Please provide a valid question."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- # Generate a math-related response using text2text generation
57
- response = math_reasoning(prompt, max_length=512)[0]['generated_text']
58
- return response
59
 
60
- # Combined chatbot logic
61
  def math_chat_bot(image, sketchpad, question, state):
62
  current_tab_index = state["tab_index"]
63
  image_description = None
64
-
65
- # Handle image upload
66
  if current_tab_index == 0:
67
  if image is not None:
68
  image_description = process_image(image)
69
-
70
- # Handle sketchpad input
71
  elif current_tab_index == 1:
 
72
  if sketchpad and sketchpad["composite"]:
73
- image_description = process_image(sketchpad["composite"], should_convert=True)
74
-
75
- # Get the math reasoning response
76
- return get_math_response(image_description, question)
77
 
78
- # CSS for formatting LaTeX
79
  css = """
80
  #qwen-md .katex-display { display: inline; }
81
  #qwen-md .katex-display>.katex { display: inline; }
82
  #qwen-md .katex-display>.katex>.katex-html { display: inline; }
83
  """
84
 
85
- # Tab selection callback
86
  def tabs_select(e: gr.SelectData, _state):
87
  _state["tab_index"] = e.index
88
 
89
- # Gradio interface
 
90
  with gr.Blocks(css=css) as demo:
91
  gr.HTML("""\
92
- <p align="center"><img src="https://huggingface.co/front/assets/huggingface_logo.svg" style="height: 60px"/><p>"""
93
- """<center><font size=8>📖 Math Reasoning Chatbot</center>"""
94
  """\
95
- <center><font size=3>This demo uses Hugging Face models for OCR and mathematical reasoning. You can input images or text-based questions.</center>"""
96
  )
97
  state = gr.State({"tab_index": 0})
98
-
99
  with gr.Row():
100
  with gr.Column():
101
  with gr.Tabs() as input_tabs:
102
  with gr.Tab("Upload"):
103
- input_image = gr.Image(type="pil", label="Upload")
104
  with gr.Tab("Sketch"):
105
- input_sketchpad = gr.Sketchpad(label="Sketch", layers=False)
106
  input_tabs.select(fn=tabs_select, inputs=[state])
107
- input_text = gr.Textbox(label="Input your question")
108
  with gr.Row():
109
  with gr.Column():
110
- clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
 
111
  with gr.Column():
112
  submit_btn = gr.Button("Submit", variant="primary")
113
-
114
  with gr.Column():
115
- output_md = gr.Markdown(label="Answer",
116
  latex_delimiters=[{
117
  "left": "\\(",
118
  "right": "\\)",
@@ -121,18 +140,30 @@ with gr.Blocks(css=css) as demo:
121
  "left": "\\begin\{equation\}",
122
  "right": "\\end\{equation\}",
123
  "display": True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  }, {
125
  "left": "\\[",
126
  "right": "\\]",
127
  "display": True
128
  }],
129
  elem_id="qwen-md")
130
-
131
- submit_btn.click(
132
- fn=math_chat_bot,
133
- inputs=[input_image, input_sketchpad, input_text, state],
134
- outputs=output_md
135
- )
136
-
137
- # Launch Gradio app
138
- demo.launch()
 
1
  import gradio as gr
2
  import os
3
+
4
+ os.system('pip install dashscope -U')
5
  import tempfile
6
  from pathlib import Path
7
  import secrets
8
+ import dashscope
9
+ from dashscope import MultiModalConversation, Generation
10
+ from PIL import Image
11
 
 
 
 
12
 
13
+ # 设置API密钥
14
+ YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN')
15
+ dashscope.api_key = YOUR_API_TOKEN
16
+ math_messages = []
17
+ def process_image(image, shouldConvert=False):
18
+ # 获取上传文件的目录
19
+ global math_messages
20
+ math_messages = [] # reset when upload image
21
  uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
22
  Path(tempfile.gettempdir()) / "gradio"
23
  )
24
  os.makedirs(uploaded_file_dir, exist_ok=True)
25
 
26
+ # 创建临时文件路径
27
+ name = f"tmp{secrets.token_hex(20)}.jpg"
28
  filename = os.path.join(uploaded_file_dir, name)
29
+ # 保存上传的图片
30
+ if shouldConvert:
 
31
  new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
32
  new_img.paste(image, (0, 0), mask=image)
33
  image = new_img
 
34
  image.save(filename)
35
 
36
+ # 调用qwen-vl-max-0809模型处理图片
37
+ messages = [{
38
+ 'role': 'system',
39
+ 'content': [{'text': 'You are a helpful assistant.'}]
40
+ }, {
41
+ 'role': 'user',
42
+ 'content': [
43
+ {'image': f'file://{filename}'},
44
+ {'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
45
+ ]
46
+ }]
47
+
48
+ response = MultiModalConversation.call(model='qwen-vl-max-0809', messages=messages)
49
 
50
+ # 清理临时文件
51
  os.remove(filename)
52
+
53
+ return response.output.choices[0]["message"]["content"]
54
 
 
55
  def get_math_response(image_description, user_question):
56
+ global math_messages
57
+ if not math_messages:
58
+ math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
59
+ math_messages = math_messages[:1]
60
+ if image_description is not None:
61
+ content = f'Image description: {image_description}\n\n'
 
 
62
  else:
63
+ content = ''
64
+ query = f"{content}User question: {user_question}"
65
+ math_messages.append({'role': 'user', 'content': query})
66
+ response = Generation.call(
67
+ model="qwen2-math-72b-instruct",
68
+ messages=math_messages,
69
+ result_format='message',
70
+ stream=True
71
+ )
72
+ answer = None
73
+ for resp in response:
74
+ if resp.output is None:
75
+ continue
76
+ answer = resp.output.choices[0].message.content
77
+ yield answer.replace("\\", "\\\\")
78
+ print(f'query: {query}\nanswer: {answer}')
79
+ if answer is None:
80
+ math_messages.pop()
81
+ else:
82
+ math_messages.append({'role': 'assistant', 'content': answer})
83
 
 
 
 
84
 
 
85
  def math_chat_bot(image, sketchpad, question, state):
86
  current_tab_index = state["tab_index"]
87
  image_description = None
88
+ # Upload
 
89
  if current_tab_index == 0:
90
  if image is not None:
91
  image_description = process_image(image)
92
+ # Sketch
 
93
  elif current_tab_index == 1:
94
+ print(sketchpad)
95
  if sketchpad and sketchpad["composite"]:
96
+ image_description = process_image(sketchpad["composite"], True)
97
+ yield from get_math_response(image_description, question)
 
 
98
 
 
99
  css = """
100
  #qwen-md .katex-display { display: inline; }
101
  #qwen-md .katex-display>.katex { display: inline; }
102
  #qwen-md .katex-display>.katex>.katex-html { display: inline; }
103
  """
104
 
 
105
  def tabs_select(e: gr.SelectData, _state):
106
  _state["tab_index"] = e.index
107
 
108
+
109
+ # 创建Gradio接口
110
  with gr.Blocks(css=css) as demo:
111
  gr.HTML("""\
112
+ <p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/><p>"""
113
+ """<center><font size=8>📖 Qwen2-Math Demo</center>"""
114
  """\
115
+ <center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
116
  )
117
  state = gr.State({"tab_index": 0})
 
118
  with gr.Row():
119
  with gr.Column():
120
  with gr.Tabs() as input_tabs:
121
  with gr.Tab("Upload"):
122
+ input_image = gr.Image(type="pil", label="Upload"),
123
  with gr.Tab("Sketch"):
124
+ input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
125
  input_tabs.select(fn=tabs_select, inputs=[state])
126
+ input_text = gr.Textbox(label="input your question")
127
  with gr.Row():
128
  with gr.Column():
129
+ clear_btn = gr.ClearButton(
130
+ [*input_image, input_sketchpad, input_text])
131
  with gr.Column():
132
  submit_btn = gr.Button("Submit", variant="primary")
 
133
  with gr.Column():
134
+ output_md = gr.Markdown(label="answer",
135
  latex_delimiters=[{
136
  "left": "\\(",
137
  "right": "\\)",
 
140
  "left": "\\begin\{equation\}",
141
  "right": "\\end\{equation\}",
142
  "display": True
143
+ }, {
144
+ "left": "\\begin\{align\}",
145
+ "right": "\\end\{align\}",
146
+ "display": True
147
+ }, {
148
+ "left": "\\begin\{alignat\}",
149
+ "right": "\\end\{alignat\}",
150
+ "display": True
151
+ }, {
152
+ "left": "\\begin\{gather\}",
153
+ "right": "\\end\{gather\}",
154
+ "display": True
155
+ }, {
156
+ "left": "\\begin\{CD\}",
157
+ "right": "\\end\{CD\}",
158
+ "display": True
159
  }, {
160
  "left": "\\[",
161
  "right": "\\]",
162
  "display": True
163
  }],
164
  elem_id="qwen-md")
165
+ submit_btn.click(
166
+ fn=math_chat_bot,
167
+ inputs=[*input_image, input_sketchpad, input_text, state],
168
+ outputs=output_md)
169
+ demo.launch()