Spaces:
Sleeping
Sleeping
Ayush Shrivastava
commited on
Commit
·
60bdc2a
1
Parent(s):
0733338
changes to Data Set
Browse files- app.py +11 -5
- plot_1.jpg +0 -0
- plot_2.jpg +0 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -8,6 +8,7 @@ from keras.models import Sequential
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from keras.layers import Dense
|
10 |
import streamlit as st
|
|
|
11 |
import io
|
12 |
|
13 |
|
@@ -19,7 +20,7 @@ def model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, it
|
|
19 |
model = Sequential()
|
20 |
|
21 |
# Adding first layers.
|
22 |
-
model.add(Dense(nodes, activation=activation, input_dim=
|
23 |
|
24 |
# Adding remaining hidden layers.
|
25 |
for i in range(layers-1):
|
@@ -82,7 +83,7 @@ if __name__ == '__main__':
|
|
82 |
with right_column:
|
83 |
|
84 |
# slider for adding noise.
|
85 |
-
noise = st.slider('Noise', min_value=0,max_value= 100,value=
|
86 |
# slider for test-train split.
|
87 |
split = st.slider('Test-Train Split', min_value=0.1,max_value= 0.9,value=0.3,step=0.1)
|
88 |
# selectbox for solver/optimizer.
|
@@ -91,12 +92,15 @@ if __name__ == '__main__':
|
|
91 |
rate = float(st.selectbox('Learning Rate',('0.001','0.003','0.01','0.03','0.1','0.3','1.0'),index=3))
|
92 |
|
93 |
# Generating regression data.
|
94 |
-
X, y = make_regression(n_samples=
|
|
|
|
|
95 |
|
96 |
# Split data into training and test sets.
|
97 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
|
98 |
|
99 |
# Predicting the test data.
|
|
|
100 |
y_hat,model = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
|
101 |
|
102 |
# Printing Model Architecture.
|
@@ -130,6 +134,7 @@ if __name__ == '__main__':
|
|
130 |
|
131 |
# write the graph to the app.
|
132 |
st.pyplot(fig1)
|
|
|
133 |
|
134 |
with right_graph:
|
135 |
|
@@ -137,8 +142,9 @@ if __name__ == '__main__':
|
|
137 |
st.write('Test Data set')
|
138 |
|
139 |
fig2, ax2 = plt.subplots(1)
|
140 |
-
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.
|
141 |
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
|
|
|
142 |
|
143 |
# setting the labels and title of the graph.
|
144 |
ax2.set_xlabel('X')
|
@@ -148,7 +154,7 @@ if __name__ == '__main__':
|
|
148 |
|
149 |
# write the graph to the app.
|
150 |
st.pyplot(fig2)
|
151 |
-
|
152 |
|
153 |
# Printing the Errors.
|
154 |
st.subheader('Errors')
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from keras.layers import Dense
|
10 |
import streamlit as st
|
11 |
+
import numpy as np
|
12 |
import io
|
13 |
|
14 |
|
|
|
20 |
model = Sequential()
|
21 |
|
22 |
# Adding first layers.
|
23 |
+
model.add(Dense(nodes, activation=activation, input_dim=1))
|
24 |
|
25 |
# Adding remaining hidden layers.
|
26 |
for i in range(layers-1):
|
|
|
83 |
with right_column:
|
84 |
|
85 |
# slider for adding noise.
|
86 |
+
noise = st.slider('Noise', min_value=0,max_value= 100,value=20,step=10)
|
87 |
# slider for test-train split.
|
88 |
split = st.slider('Test-Train Split', min_value=0.1,max_value= 0.9,value=0.3,step=0.1)
|
89 |
# selectbox for solver/optimizer.
|
|
|
92 |
rate = float(st.selectbox('Learning Rate',('0.001','0.003','0.01','0.03','0.1','0.3','1.0'),index=3))
|
93 |
|
94 |
# Generating regression data.
|
95 |
+
# X, y = make_regression(n_samples=100, n_features=1, noise=noise,random_state=42,bias=3)
|
96 |
+
X=np.linspace(0,50,100)
|
97 |
+
y = np.sin(X) + X + X*np.random.normal(0,1,100)/5
|
98 |
|
99 |
# Split data into training and test sets.
|
100 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
|
101 |
|
102 |
# Predicting the test data.
|
103 |
+
X_test.sort(axis=0)
|
104 |
y_hat,model = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
|
105 |
|
106 |
# Printing Model Architecture.
|
|
|
134 |
|
135 |
# write the graph to the app.
|
136 |
st.pyplot(fig1)
|
137 |
+
plt.savefig('plot_1.jpg')
|
138 |
|
139 |
with right_graph:
|
140 |
|
|
|
142 |
st.write('Test Data set')
|
143 |
|
144 |
fig2, ax2 = plt.subplots(1)
|
145 |
+
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.6)
|
146 |
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
|
147 |
+
ax2.plot(X_test, y_hat, label='prediction',c='red',alpha=0.6)
|
148 |
|
149 |
# setting the labels and title of the graph.
|
150 |
ax2.set_xlabel('X')
|
|
|
154 |
|
155 |
# write the graph to the app.
|
156 |
st.pyplot(fig2)
|
157 |
+
plt.savefig('plot_2.jpg')
|
158 |
|
159 |
# Printing the Errors.
|
160 |
st.subheader('Errors')
|
plot_1.jpg
ADDED
![]() |
plot_2.jpg
ADDED
![]() |
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ scikit-learn==1.2.0
|
|
2 |
keras==2.12.0
|
3 |
streamlit==1.19.0
|
4 |
tensorflow==2.12.0
|
5 |
-
matplotlib==3.6.3
|
|
|
|
2 |
keras==2.12.0
|
3 |
streamlit==1.19.0
|
4 |
tensorflow==2.12.0
|
5 |
+
matplotlib==3.6.3
|
6 |
+
numpy==1.23.5
|