Spaces:
Sleeping
Sleeping
File size: 6,206 Bytes
ec505fb ad9fc45 ec505fb 0545a22 dd91e31 ec505fb 977b2d0 ec505fb ec52c4d ec505fb 105395c ec505fb 215da49 105395c c25ad7f ec52c4d 105395c c25ad7f ec52c4d ec505fb ec52c4d ec505fb bb221fb ec505fb 105395c ec505fb bb221fb ec505fb 105395c bb221fb 105395c bb221fb 105395c bb221fb 105395c bb221fb 105395c ec505fb 105395c ec505fb 977b2d0 ec505fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import subprocess
import sys
import shlex
import spaces
import torch
print(torch.__version__)
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL_BIG = "HuggingFaceTB/SmolLM-360M-Instruct"
MODEL_SMALL = "HuggingFaceTB/SmolLM-135M-Instruct"
TITLE = "<h1><center>Auto-Guidance Playground</center></h1>"
SUB_TITLE = """<center>Auto-guidance was a technique made by NVIDIA for text-conditioned image models. This is a test of the concept with SmolLM.</center>"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""
tokenizer = AutoTokenizer.from_pretrained(MODEL_SMALL)
model_big = AutoModelForCausalLM.from_pretrained(
MODEL_BIG,
torch_dtype=torch.bfloat16,
device_map="auto")
model_small = AutoModelForCausalLM.from_pretrained(
MODEL_SMALL,
torch_dtype=torch.bfloat16,
device_map="auto")
if model_big.device == "cuda":
model_big = torch.compile(model_big)
if model_small.device == "cuda":
model_small = torch.compile(model_small)
@torch.no_grad()
@spaces.GPU
def stream_chat(
message: str,
history: list,
temperature: float = 0.3,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
guidance_scale: float = 1.5,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
inputs = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt")
generated_tokens = []
current_input = inputs
cache_small = None
cache_big = None
for _ in range(max_new_tokens):
outputs_small = model_small(current_input, use_cache=True, past_key_values=cache_small)
outputs_big = model_big(current_input, use_cache=True, past_key_values=cache_big)
logits_small = outputs_small.logits[:, -1, :]
logits_big = outputs_big.logits[:, -1, :]
interpolated_logits = logits_big + (guidance_scale - 1) * (logits_big - logits_small)
if top_p < 1.0:
interpolated_logits = top_p_filtering(interpolated_logits, top_p=top_p)
if top_k > 0:
interpolated_logits = top_k_filtering(interpolated_logits, top_k=top_k)
next_token = torch.multinomial(torch.softmax(interpolated_logits, dim=-1), num_samples=1)
if next_token.item() == tokenizer.eos_token_id:
break
generated_tokens.append(next_token.item())
current_input = next_token
# Update the cache with the latest past_key_values
cache_small = outputs_small.past_key_values
cache_big = outputs_big.past_key_values
partial_output = tokenizer.decode(generated_tokens, skip_special_tokens=True)
yield partial_output
print(f'response: {partial_output}')
def top_k_filtering(logits, top_k=0, filter_value=-float('Inf')):
top_k = min(top_k, logits.size(-1))
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
return logits
def top_p_filtering(logits, top_p=0.0, filter_value=-float('Inf')):
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
chatbot = gr.Chatbot(height=600)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.HTML(SUB_TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=10.0,
step=0.1,
value=1.5,
label="Auto-Guidance Scale",
render=False,
),
],
examples=[
["Hello there, can you suggest few places to visit in UAE?"],
["What UAE is known for?"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |