File size: 6,206 Bytes
ec505fb
 
ad9fc45
ec505fb
0545a22
 
dd91e31
 
ec505fb
977b2d0
ec505fb
 
ec52c4d
 
ec505fb
105395c
 
ec505fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215da49
105395c
 
c25ad7f
ec52c4d
105395c
 
c25ad7f
ec52c4d
 
 
 
ec505fb
ec52c4d
 
ec505fb
bb221fb
ec505fb
 
 
 
 
 
 
 
 
105395c
ec505fb
 
 
 
 
 
 
 
 
 
 
 
 
bb221fb
ec505fb
105395c
 
bb221fb
 
 
105395c
 
bb221fb
 
 
 
 
105395c
bb221fb
105395c
 
 
 
 
 
 
 
 
 
 
 
bb221fb
 
 
 
 
105395c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec505fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105395c
 
 
 
 
 
 
 
ec505fb
 
 
 
 
 
 
977b2d0
 
ec505fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import subprocess
import sys
import shlex
import spaces
import torch

print(torch.__version__)

from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread

MODEL_BIG = "HuggingFaceTB/SmolLM-360M-Instruct"
MODEL_SMALL = "HuggingFaceTB/SmolLM-135M-Instruct"

TITLE = "<h1><center>Auto-Guidance Playground</center></h1>"
SUB_TITLE = """<center>Auto-guidance was a technique made by NVIDIA for text-conditioned image models. This is a test of the concept with SmolLM.</center>"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""

tokenizer = AutoTokenizer.from_pretrained(MODEL_SMALL)
model_big = AutoModelForCausalLM.from_pretrained(
    MODEL_BIG,
    torch_dtype=torch.bfloat16, 
    device_map="auto")
model_small = AutoModelForCausalLM.from_pretrained(
    MODEL_SMALL,
    torch_dtype=torch.bfloat16, 
    device_map="auto")

if model_big.device == "cuda":
    model_big = torch.compile(model_big)

if model_small.device == "cuda":
    model_small = torch.compile(model_small)

@torch.no_grad()
@spaces.GPU
def stream_chat(
    message: str, 
    history: list, 
    temperature: float = 0.3, 
    max_new_tokens: int = 1024, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
    guidance_scale: float = 1.5,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = []
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    inputs = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt")
    
    generated_tokens = []
    current_input = inputs
    
    cache_small = None
    cache_big = None

    for _ in range(max_new_tokens):
        outputs_small = model_small(current_input, use_cache=True, past_key_values=cache_small)
        outputs_big = model_big(current_input, use_cache=True, past_key_values=cache_big)
        
        logits_small = outputs_small.logits[:, -1, :]
        logits_big = outputs_big.logits[:, -1, :]

        interpolated_logits = logits_big + (guidance_scale - 1) * (logits_big - logits_small)

        if top_p < 1.0:
            interpolated_logits = top_p_filtering(interpolated_logits, top_p=top_p)
        if top_k > 0:
            interpolated_logits = top_k_filtering(interpolated_logits, top_k=top_k)

        next_token = torch.multinomial(torch.softmax(interpolated_logits, dim=-1), num_samples=1)

        if next_token.item() == tokenizer.eos_token_id:
            break

        generated_tokens.append(next_token.item())
        current_input = next_token

        # Update the cache with the latest past_key_values
        cache_small = outputs_small.past_key_values
        cache_big = outputs_big.past_key_values

        partial_output = tokenizer.decode(generated_tokens, skip_special_tokens=True)
        yield partial_output

    print(f'response: {partial_output}')

def top_k_filtering(logits, top_k=0, filter_value=-float('Inf')):
    top_k = min(top_k, logits.size(-1))
    if top_k > 0:
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
    return logits

def top_p_filtering(logits, top_p=0.0, filter_value=-float('Inf')):
    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
        sorted_indices_to_remove = cumulative_probs > top_p
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0
        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits
            
chatbot = gr.Chatbot(height=600)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.3,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=10.0,
                step=0.1,
                value=1.5,
                label="Auto-Guidance Scale",
                render=False,
            ),
        ],
        examples=[
            ["Hello there, can you suggest few places to visit in UAE?"],
            ["What UAE is known for?"],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()