awacke1's picture
Create app.py
94380fb verified
raw
history blame
7.43 kB
import streamlit as st
import requests
import base64
import os
import asyncio
from huggingface_hub import HfApi
import plotly.express as px
# Initialize the Hugging Face API
api = HfApi()
# Directory to save the downloaded and generated files
HTML_DIR = "generated_html_pages"
if not os.path.exists(HTML_DIR):
os.makedirs(HTML_DIR)
# Default list of Hugging Face usernames
default_users = {
"users": [
"awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
"cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
"phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
"TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
"ccdv", "haonan-li", "chansung", "lukaemon", "hails",
"pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
]
}
# Asynchronous function to fetch user content using Hugging Face API
async def fetch_user_content(username):
try:
# Fetch models and datasets
models = list(await asyncio.to_thread(api.list_models, author=username))
datasets = list(await asyncio.to_thread(api.list_datasets, author=username))
return {
"username": username,
"models": models,
"datasets": datasets
}
except Exception as e:
return {"username": username, "error": str(e)}
# Fetch all users concurrently
async def fetch_all_users(usernames):
tasks = [fetch_user_content(username) for username in usernames]
return await asyncio.gather(*tasks)
# Function to download the user page using requests
def download_user_page(username):
url = f"https://huggingface.co/{username}"
try:
response = requests.get(url)
response.raise_for_status()
html_content = response.text
html_file_path = os.path.join(HTML_DIR, f"{username}.html")
with open(html_file_path, "w", encoding='utf-8') as html_file:
html_file.write(html_content)
return html_file_path, None
except Exception as e:
return None, str(e)
# Function to base64 encode the HTML file
def encode_html_to_base64(html_file_path):
try:
with open(html_file_path, "rb") as file:
encoded_bytes = base64.b64encode(file.read())
encoded_str = encoded_bytes.decode('utf-8')
return encoded_str, None
except Exception as e:
return None, str(e)
# Cache the downloaded and encoded content to avoid redundant operations
@st.cache_data(show_spinner=False, ttl=3600)
def get_cached_base64_html(username):
html_file_path, error = download_user_page(username)
if error:
return None, error
encoded_str, encode_error = encode_html_to_base64(html_file_path)
if encode_error:
return None, encode_error
return encoded_str, None
# Streamlit app setup
st.title("Hugging Face User Page Downloader 📄✨")
# Text area with default list of usernames
user_input = st.text_area(
"Enter Hugging Face usernames (one per line):",
value="\n".join(default_users["users"]),
height=300
)
# Show User Content button
if st.button("Show User Content"):
if user_input:
username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
# Collect statistics for Plotly graphs
stats = {"username": [], "models_count": [], "datasets_count": []}
st.markdown("### User Content Overview")
for username in username_list:
with st.container():
# Profile link
st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")
# Fetch models and datasets
user_data = asyncio.run(fetch_user_content(username))
if "error" in user_data:
st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
else:
models = user_data["models"]
datasets = user_data["datasets"]
# Encode the downloaded HTML page to base64
base64_html, encode_error = get_cached_base64_html(username)
if base64_html:
# Provide a download link for the base64-encoded HTML
b64_filename = f"{username}_base64.txt"
st.download_button(
label=f"📥 Download {username}'s Base64 Encoded HTML",
data=base64_html,
file_name=b64_filename,
mime="text/plain"
)
else:
st.error(f"Failed to encode HTML for {username}: {encode_error}")
# Add to statistics
stats["username"].append(username)
stats["models_count"].append(len(models))
stats["datasets_count"].append(len(datasets))
# Display models
with st.expander(f"🧠 Models ({len(models)})", expanded=False):
if models:
for model in models:
model_name = model.modelId.split("/")[-1]
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
else:
st.markdown("No models found. 🤷‍♂️")
# Display datasets
with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
if datasets:
for dataset in datasets:
dataset_name = dataset.id.split("/")[-1]
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
else:
st.markdown("No datasets found. 🤷‍♀️")
st.markdown("---")
# Plotly graphs to visualize the number of models and datasets each user has
if stats["username"]:
st.markdown("### User Content Statistics")
# Number of models per user
fig_models = px.bar(
x=stats["username"],
y=stats["models_count"],
labels={'x': 'Username', 'y': 'Number of Models'},
title="Number of Models per User"
)
st.plotly_chart(fig_models)
# Number of datasets per user
fig_datasets = px.bar(
x=stats["username"],
y=stats["datasets_count"],
labels={'x': 'Username', 'y': 'Number of Datasets'},
title="Number of Datasets per User"
)
st.plotly_chart(fig_datasets)
else:
st.warning("Please enter at least one username. Don't be shy! 😅")
# Sidebar instructions
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click **'Show User Content'**.
3. View each user's models and datasets along with a link to their Hugging Face profile.
4. **Download a base64-encoded HTML page** for each user by clicking the download button.
5. Check out the statistics visualizations below!
""")