Spaces:
Running
Running
lixuejing
commited on
Commit
·
8e7012e
1
Parent(s):
1141b52
update
Browse files- src/about.py +2 -2
src/about.py
CHANGED
@@ -113,7 +113,7 @@ EmbodiedVerse-Open is a meta-dataset composed of 10 datasets for comprehensively
|
|
113 |
我们对上述10个数据集的数据进行了能力维度划分,归纳出具身智能场景需要的4大能力维度空间理解,感知,预测,规划。并按照能力维度,采样出一个样本数为2042的优质子集,能力维度定义和各维度的数据量如下:
|
114 |
|
115 |
We have categorized the data of the above 10 datasets by capability dimensions, and summarized four major capability dimensions required for embodied intelligence scenarios: spatial understanding, perception, prediction, and planning. According to the capability dimensions, a high-quality subset with 2,042 samples was sampled. The definitions of the capability dimensions and the data volume of each dimension are as follows:
|
116 |
-
|
117 |
Spatial Reasoning: 1085 53.13%
|
118 |
Dynamic: 200 18.43%
|
119 |
Relative direction: 200 18.43%
|
@@ -135,7 +135,7 @@ Prediction: 245 12.00%
|
|
135 |
Planning: 264 12.93%
|
136 |
Goal Decomposition: 200 75.76%
|
137 |
Navigation: 64 24.24%
|
138 |
-
|
139 |
## Embodied Verse tool - FlagEvalMM
|
140 |
FlagEvalMM是一个开源评估框架,旨在全面评估多模态模型,其提供了一种标准化的方法来评估跨各种任务和指标使用多种模式(文本、图像、视频)的模型。
|
141 |
|
|
|
113 |
我们对上述10个数据集的数据进行了能力维度划分,归纳出具身智能场景需要的4大能力维度空间理解,感知,预测,规划。并按照能力维度,采样出一个样本数为2042的优质子集,能力维度定义和各维度的数据量如下:
|
114 |
|
115 |
We have categorized the data of the above 10 datasets by capability dimensions, and summarized four major capability dimensions required for embodied intelligence scenarios: spatial understanding, perception, prediction, and planning. According to the capability dimensions, a high-quality subset with 2,042 samples was sampled. The definitions of the capability dimensions and the data volume of each dimension are as follows:
|
116 |
+
```python
|
117 |
Spatial Reasoning: 1085 53.13%
|
118 |
Dynamic: 200 18.43%
|
119 |
Relative direction: 200 18.43%
|
|
|
135 |
Planning: 264 12.93%
|
136 |
Goal Decomposition: 200 75.76%
|
137 |
Navigation: 64 24.24%
|
138 |
+
```
|
139 |
## Embodied Verse tool - FlagEvalMM
|
140 |
FlagEvalMM是一个开源评估框架,旨在全面评估多模态模型,其提供了一种标准化的方法来评估跨各种任务和指标使用多种模式(文本、图像、视频)的模型。
|
141 |
|