File size: 8,163 Bytes
7f3430b
c1009f8
9916325
 
c1009f8
9916325
7a077d7
b88951f
 
7a077d7
c1009f8
f684fa1
a53d4df
089a83f
f4466b2
089a83f
d5f43a3
 
 
 
 
089a83f
9916325
c1009f8
c71d159
c1009f8
c71d159
c1009f8
92b0167
 
b88951f
 
c8dd9c0
b88951f
 
 
 
 
 
f684fa1
c1009f8
 
 
 
 
 
b370650
c1009f8
 
 
 
 
 
8ff2c37
c1009f8
 
 
 
 
b370650
089a83f
 
 
 
 
 
5f00699
089a83f
 
 
 
 
 
 
 
 
 
45f988c
 
 
 
a54b7bc
45f988c
5f00699
089a83f
45f988c
 
 
 
089a83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45f988c
5f00699
089a83f
 
 
 
 
 
 
 
 
 
c1009f8
089a83f
 
 
 
 
 
 
 
 
 
 
 
 
 
0e49572
 
 
 
 
 
 
 
 
 
 
 
7702656
 
8527f42
7702656
 
7da87e1
 
 
 
 
 
 
 
 
 
 
 
 
 
8527f42
 
 
 
7da87e1
 
 
089a83f
8527f42
c1009f8
7702656
 
089a83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1009f8
089a83f
 
c1009f8
 
 
 
 
42aa752
c1009f8
 
 
 
 
 
089a83f
 
1e2e0a1
7f2393e
089a83f
 
 
 
 
 
 
 
 
 
 
 
 
 
934e44a
c1009f8
089a83f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import torch
import requests
import tempfile
import threading
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Neo4jVector
from langchain_community.graphs import Neo4jGraph
from langchain_core.prompts import ChatPromptTemplate
import time
import os
from dataclasses import dataclass

# Define AppState to store audio state information
@dataclass
class AppState:
    stream: np.ndarray | None = None
    sampling_rate: int = 0
    pause_detected: bool = False
    started_talking: bool = False

# Neo4j setup
graph = Neo4jGraph(
    url="neo4j+s://c62d0d35.databases.neo4j.io",
    username="neo4j",
    password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
)

# Initialize the vector index with Neo4j
vector_index = Neo4jVector.from_existing_graph(
    OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']),
    graph=graph,
    search_type="hybrid",
    node_label="Document",
    text_node_properties=["text"],
    embedding_node_property="embedding",
)

# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
    return_timestamps=True
)

# Function to determine if a pause occurred
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
    """Take in the stream, determine if a pause happened"""
    temp_audio = audio
    dur_vad = len(temp_audio) / sampling_rate  # Simulating VAD duration for this example
    duration = len(audio) / sampling_rate

    if dur_vad > 0.5 and not state.started_talking:
        print("Started talking")
        state.started_talking = True
        return False

    print(f"Duration after VAD: {dur_vad:.3f} s")

    return (duration - dur_vad) > 1  # Adjust the threshold for pause duration as needed

# Function to process audio input, detect pauses, and handle state
def process_audio(audio: tuple, state: AppState):
    if state.stream is None:
        state.stream = audio[1]
        state.sampling_rate = audio[0]
    else:
        state.stream = np.concatenate((state.stream, audio[1]))

    # Check for a pause in speech
    pause_detected = determine_pause(state.stream, state.sampling_rate, state)
    state.pause_detected = pause_detected

    if state.pause_detected and state.started_talking:
        # Transcribe the audio when a pause is detected
        _, transcription, _ = transcribe_function(state.stream, (state.sampling_rate, state.stream))
        print(f"Transcription: {transcription}")

        # Retrieve hybrid response using Neo4j and other methods
        response_text = retriever(transcription)
        print(f"Response: {response_text}")

        # Generate audio from the response text
        audio_path = generate_audio_elevenlabs(response_text)

        # Reset state for the next input
        state.stream = None
        state.started_talking = False
        state.pause_detected = False

        return audio_path, state

    return None, state

# Function to process audio input and transcribe it
def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    if y is None or len(y) == 0:
        return stream, "", None

    y = y.astype(np.float32)
    max_abs_y = np.max(np.abs(y))
    if max_abs_y > 0:
        y = y / max_abs_y

    if stream is not None and len(stream) > 0:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
    full_text = result.get("text", "")

    return stream, full_text, full_text

# Function to generate a full-text search query for Neo4j
def generate_full_text_query(input: str) -> str:
    words = [el for el in input.split() if el]
    if not words:
        return ""  # Return an empty string or a default query if desired
    full_text_query = ""
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()

# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        return audio_path
    else:
        print(f"Error generating audio: {response.text}")
        return None

# Define the template for generating responses based on context
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick, short and crisp response in a conversational and straightforward way without any Greet.
Context:
{context}

Question: {question}
Answer concisely:"""

# Create a prompt object using the template
prompt = ChatPromptTemplate.from_template(template)

# Function to generate a response using the prompt and the context
def generate_response_with_prompt(context, question):
    formatted_prompt = prompt.format(
        context=context,
        question=question
    )
    llm = ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
    response = llm(formatted_prompt)
    return response.content.strip()

# Define the function to generate a hybrid response using Neo4j and other retrieval methods
def retriever(question: str):
    structured_query = f"""
    CALL db.index.fulltext.queryNodes('entity', $query, {{limit: 2}})
    YIELD node, score
    RETURN node.id AS entity, node.text AS context, score
    ORDER BY score DESC
    LIMIT 2
    """
    structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
    structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])

    unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
    unstructured_response = "\n".join(unstructured_data)

    combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
    final_response = generate_response_with_prompt(combined_context, question)
    return final_response

# Create Gradio interface for audio input and output
interface = gr.Interface(
    fn=lambda audio, state: process_audio(audio, state),
    inputs=[
        gr.Audio(sources="microphone", type="numpy", streaming=True),
        gr.State(AppState())
    ],
    outputs=[
        gr.Audio(type="filepath", autoplay=True, interactive=False),
        gr.State()
    ],
    live=True,
    description="Ask questions via audio and receive audio responses.",
    allow_flagging="never"
)

# Launch the Gradio app
interface.launch()