Spaces:
Runtime error
Runtime error
File size: 8,163 Bytes
7f3430b c1009f8 9916325 c1009f8 9916325 7a077d7 b88951f 7a077d7 c1009f8 f684fa1 a53d4df 089a83f f4466b2 089a83f d5f43a3 089a83f 9916325 c1009f8 c71d159 c1009f8 c71d159 c1009f8 92b0167 b88951f c8dd9c0 b88951f f684fa1 c1009f8 b370650 c1009f8 8ff2c37 c1009f8 b370650 089a83f 5f00699 089a83f 45f988c a54b7bc 45f988c 5f00699 089a83f 45f988c 089a83f 45f988c 5f00699 089a83f c1009f8 089a83f 0e49572 7702656 8527f42 7702656 7da87e1 8527f42 7da87e1 089a83f 8527f42 c1009f8 7702656 089a83f c1009f8 089a83f c1009f8 42aa752 c1009f8 089a83f 1e2e0a1 7f2393e 089a83f 934e44a c1009f8 089a83f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import torch
import requests
import tempfile
import threading
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Neo4jVector
from langchain_community.graphs import Neo4jGraph
from langchain_core.prompts import ChatPromptTemplate
import time
import os
from dataclasses import dataclass
# Define AppState to store audio state information
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
# Neo4j setup
graph = Neo4jGraph(
url="neo4j+s://c62d0d35.databases.neo4j.io",
username="neo4j",
password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
)
# Initialize the vector index with Neo4j
vector_index = Neo4jVector.from_existing_graph(
OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']),
graph=graph,
search_type="hybrid",
node_label="Document",
text_node_properties=["text"],
embedding_node_property="embedding",
)
# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
return_timestamps=True
)
# Function to determine if a pause occurred
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
"""Take in the stream, determine if a pause happened"""
temp_audio = audio
dur_vad = len(temp_audio) / sampling_rate # Simulating VAD duration for this example
duration = len(audio) / sampling_rate
if dur_vad > 0.5 and not state.started_talking:
print("Started talking")
state.started_talking = True
return False
print(f"Duration after VAD: {dur_vad:.3f} s")
return (duration - dur_vad) > 1 # Adjust the threshold for pause duration as needed
# Function to process audio input, detect pauses, and handle state
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
# Check for a pause in speech
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected and state.started_talking:
# Transcribe the audio when a pause is detected
_, transcription, _ = transcribe_function(state.stream, (state.sampling_rate, state.stream))
print(f"Transcription: {transcription}")
# Retrieve hybrid response using Neo4j and other methods
response_text = retriever(transcription)
print(f"Response: {response_text}")
# Generate audio from the response text
audio_path = generate_audio_elevenlabs(response_text)
# Reset state for the next input
state.stream = None
state.started_talking = False
state.pause_detected = False
return audio_path, state
return None, state
# Function to process audio input and transcribe it
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
if y is None or len(y) == 0:
return stream, "", None
y = y.astype(np.float32)
max_abs_y = np.max(np.abs(y))
if max_abs_y > 0:
y = y / max_abs_y
if stream is not None and len(stream) > 0:
stream = np.concatenate([stream, y])
else:
stream = y
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
return stream, full_text, full_text
# Function to generate a full-text search query for Neo4j
def generate_full_text_query(input: str) -> str:
words = [el for el in input.split() if el]
if not words:
return "" # Return an empty string or a default query if desired
full_text_query = ""
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
return audio_path
else:
print(f"Error generating audio: {response.text}")
return None
# Define the template for generating responses based on context
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick, short and crisp response in a conversational and straightforward way without any Greet.
Context:
{context}
Question: {question}
Answer concisely:"""
# Create a prompt object using the template
prompt = ChatPromptTemplate.from_template(template)
# Function to generate a response using the prompt and the context
def generate_response_with_prompt(context, question):
formatted_prompt = prompt.format(
context=context,
question=question
)
llm = ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
response = llm(formatted_prompt)
return response.content.strip()
# Define the function to generate a hybrid response using Neo4j and other retrieval methods
def retriever(question: str):
structured_query = f"""
CALL db.index.fulltext.queryNodes('entity', $query, {{limit: 2}})
YIELD node, score
RETURN node.id AS entity, node.text AS context, score
ORDER BY score DESC
LIMIT 2
"""
structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])
unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
unstructured_response = "\n".join(unstructured_data)
combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
final_response = generate_response_with_prompt(combined_context, question)
return final_response
# Create Gradio interface for audio input and output
interface = gr.Interface(
fn=lambda audio, state: process_audio(audio, state),
inputs=[
gr.Audio(sources="microphone", type="numpy", streaming=True),
gr.State(AppState())
],
outputs=[
gr.Audio(type="filepath", autoplay=True, interactive=False),
gr.State()
],
live=True,
description="Ask questions via audio and receive audio responses.",
allow_flagging="never"
)
# Launch the Gradio app
interface.launch()
|