File size: 7,878 Bytes
7f3430b
c1009f8
9916325
 
c1009f8
9916325
7a077d7
b88951f
 
7a077d7
c1009f8
 
f684fa1
a53d4df
9916325
c1009f8
c71d159
c1009f8
c71d159
c1009f8
92b0167
 
b88951f
 
c8dd9c0
b88951f
 
 
 
 
 
f684fa1
c1009f8
 
 
 
 
 
b370650
c1009f8
 
 
 
 
 
 
 
 
 
 
 
b370650
c1009f8
 
 
 
b370650
c1009f8
 
 
 
 
 
 
f0bef0b
c1009f8
 
 
f0bef0b
c1009f8
 
 
 
b370650
c1009f8
 
 
 
 
 
 
 
 
 
 
 
 
 
b370650
54c6fcd
 
 
 
 
 
 
 
 
 
b88951f
 
54c6fcd
b88951f
54c6fcd
 
 
 
 
 
 
b88951f
 
 
 
 
54c6fcd
50b7e5a
7702656
 
8527f42
7702656
 
c1009f8
 
 
 
165cb65
 
 
c1009f8
 
 
 
 
 
165cb65
8527f42
 
 
 
 
 
 
c1009f8
8527f42
c1009f8
7702656
 
c1009f8
4873ba5
9bdfa32
c1009f8
 
7e66356
c1009f8
 
8527f42
c1009f8
 
f0bef0b
c1009f8
 
366743f
c1009f8
 
28374c4
366743f
 
 
 
 
 
c1009f8
50b7e5a
c1009f8
 
 
 
 
 
 
 
 
 
42aa752
c1009f8
 
 
 
 
 
 
 
 
 
 
 
 
50b7e5a
c1009f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ea90d
a29e32a
c1009f8
13ea90d
 
c1009f8
934e44a
c1009f8
b88951f
13ea90d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
import torch
import requests
import tempfile
import threading
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Neo4jVector
from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
import time
import os

# Neo4j setup
graph = Neo4jGraph(
    url="neo4j+s://c62d0d35.databases.neo4j.io",
    username="neo4j",
    password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
)

# Initialize the vector index with Neo4j
vector_index = Neo4jVector.from_existing_graph(
    OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']),
    graph=graph,
    search_type="hybrid",
    node_label="Document",
    text_node_properties=["text"],
    embedding_node_property="embedding",
)

# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
    return_timestamps=True
)

# Function to reset the state after 10 seconds
def auto_reset_state():
    time.sleep(5)
    return None, ""  # Reset the state and clear input text

# Function to process audio input and transcribe it
def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    # Ensure y is not empty and is at least 1-dimensional
    if y is None or len(y) == 0:
        return stream, "", None

    y = y.astype(np.float32)
    max_abs_y = np.max(np.abs(y))
    if max_abs_y > 0:
        y = y / max_abs_y

    # Ensure stream is also at least 1-dimensional before concatenation
    if stream is not None and len(stream) > 0:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    # Process the audio data for transcription
    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
    full_text = result.get("text", "")

    # Start a thread to reset the state after 10 seconds
    threading.Thread(target=auto_reset_state).start()

    return stream, full_text, full_text

# Function to generate a full-text search query for Neo4j
#def generate_full_text_query(input: str) -> str:
    #full_text_query = ""
    #words = [el for el in input.split() if el]
    #for word in words[:-1]:
        #full_text_query += f" {word}~2 AND"
    #full_text_query += f" {words[-1]}~2"
    #return full_text_query.strip()


# Function to generate a full-text search query for Neo4j
def generate_full_text_query(input: str) -> str:
    # Split the input into words, ignoring any empty strings
    words = [el for el in input.split() if el]

    # Check if there are no words
    if not words:
        return ""  # Return an empty string or a default query if desired

    # Create the full-text query with fuzziness (~2 for proximity search)
    full_text_query = ""
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()



# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        return audio_path  # Return audio path for automatic playback
    else:
        print(f"Error generating audio: {response.text}")
        return None

# Define the template for generating responses based on context
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational and straight-foreward way without any Greet.
Context:
{context}

Question: {question}
Answer concisely:"""

# Create a prompt object using the template
prompt = ChatPromptTemplate.from_template(template)

# Function to generate a response using the prompt and the context
def generate_response_with_prompt(context, question):
    formatted_prompt = prompt.format(
        context=context,
        question=question
    )
    # Use the ChatOpenAI instance to generate a response directly from the formatted prompt
    llm = ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
    response = llm(formatted_prompt)
    return response.content.strip()




# Define the function to generate a hybrid response using Neo4j and other retrieval methods
def retriever(question: str):
    # Structured data retrieval from Neo4j
    structured_query = f"""
    CALL db.index.fulltext.queryNodes('entity', $query, {{limit: 2}})
    YIELD node, score
    RETURN node.id AS entity, node.text AS context, score
    ORDER BY score DESC
    LIMIT 2
    """
    structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
    structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])

    # Unstructured data retrieval from vector store
    unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
    unstructured_response = "\n".join(unstructured_data)

    # Combine structured and unstructured responses
    combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
    
    # Generate the final response using the prompt template
    final_response = generate_response_with_prompt(combined_context, question)
    return final_response


# Function to handle the entire audio query and response process
def process_audio_query(audio_input):
    stream = None
    _, transcription, _ = transcribe_function(stream, audio_input)
    print(f"Transcription: {transcription}")
    
    # Retrieve hybrid response using Neo4j and other methods
    response_text = retriever(transcription)
    print(f"Response: {response_text}")
    
    # Generate audio from the response text
    audio_path = generate_audio_elevenlabs(response_text)
    return audio_path

# Create Gradio interface for audio input and output
interface = gr.Interface(
    fn=process_audio_query,
    inputs=gr.Audio(source="microphone", type="numpy"),
    outputs=gr.Audio(type="filepath", autoplay=True),
    live=True,
    description="Ask questions via audio and receive audio responses.",
    allow_flagging="never"  # Disables the Clear button
)

# Launch the Gradio app
interface.launch()