File size: 7,075 Bytes
7f3430b
 
c71d159
165cb65
cc3ca63
74d7618
165cb65
193ef9a
 
 
 
 
 
 
92b0167
193ef9a
c71d159
 
 
 
92b0167
 
c71d159
 
 
 
 
 
 
 
 
 
 
165cb65
 
c71d159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7702656
 
 
 
 
165cb65
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3074d
 
 
 
 
 
 
 
 
 
 
7702656
 
680dd01
165cb65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193ef9a
35593b5
 
61ae7dd
35593b5
165cb65
35593b5
 
165cb65
61ae7dd
 
 
 
 
 
 
 
 
 
193ef9a
165cb65
61ae7dd
 
 
193ef9a
 
 
 
 
165cb65
61ae7dd
 
 
 
 
 
 
35593b5
165cb65
2eda2b6
 
 
 
165cb65
193ef9a
c689665
165cb65
193ef9a
 
 
 
 
 
 
 
 
 
 
a51d4fa
35593b5
 
 
 
 
 
28374c4
934e44a
28374c4
193ef9a
28374c4
61ae7dd
193ef9a
28374c4
934e44a
c71d159
61ae7dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import os
import logging
import requests
import tempfile
import torch
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_community.graphs import Neo4jGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from typing import List
import time

# Neo4j Setup
graph = Neo4jGraph(
    url="neo4j+s://6457770f.databases.neo4j.io",
    username="neo4j",
    password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)

# Define entity extraction and retrieval functions
class Entities(BaseModel):
    names: List[str] = Field(
        ..., description="All the person, organization, or business entities that appear in the text"
    )

entity_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are extracting organization and person entities from the text."),
    ("human", "Use the given format to extract information from the following input: {question}"),
])

chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)

def remove_lucene_chars(input: str) -> str:
    return input.translate(str.maketrans({
        "\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
        "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
        "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
        ";": r"\;", " ": r"\ "
    }))

def generate_full_text_query(input: str) -> str:
    full_text_query = ""
    words = [el for el in remove_lucene_chars(input).split() if el]
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()

def structured_retriever(question: str) -> str:
    result = ""
    entities = entity_chain.invoke({"question": question})
    for entity in entities.names:
        response = graph.query(
            """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
            YIELD node,score
            CALL {
              WITH node
              MATCH (node)-[r:!MENTIONS]->(neighbor)
              RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
              UNION ALL
              WITH node
              MATCH (node)<-[r:!MENTIONS]-(neighbor)
              RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
            }
            RETURN output LIMIT 50
            """,
            {"query": generate_full_text_query(entity)},
        )
        result += "\n".join([el['output'] for el in response])
    return result

# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        logging.debug(f"Audio saved to {audio_path}")
        return audio_path  # Return audio path for automatic playback
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None


# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
    return_timestamps=True
)

# Function to handle audio input, transcribe, fetch from Neo4j, and generate audio response
def transcribe_and_respond(audio):
    if audio is None:
        logging.error("No audio provided.")
        return None, "No audio provided."

    sr, y = audio
    y = np.array(y).astype(np.float32)

    # Normalize the audio array
    max_abs_y = np.max(np.abs(y))
    if max_abs_y > 0:
        y = y / max_abs_y

    # Prepare input_features for Whisper model
    input_features = processor(y, sampling_rate=sr, return_tensors="pt").input_features

    # Transcribe the audio using Whisper with English language setting
    result = pipe_asr({"input_features": input_features, "language": "en"}, return_timestamps=False)
    question = result.get("text", "")

    # Log the transcribed text for debugging
    logging.debug(f"Transcribed text: {question}")

    # Retrieve information from Neo4j
    response_text = structured_retriever(question) if question else "I didn't understand the question."
    
    # Convert the response to audio using Eleven Labs TTS
    audio_path = generate_audio_elevenlabs(response_text) if response_text else None

    # Ensure a valid audio path is returned
    if audio_path and os.path.exists(audio_path):
        logging.debug(f"Generated audio file path: {audio_path}")
    else:
        logging.error("Failed to generate audio or save audio to file.")
        audio_path = None
    
    return audio_path, response_text

# Function to clear the transcription state
def clear_transcription_state():
    return None, None


# Define the Gradio interface with only audio input and output
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
    with gr.Row():
        audio_input = gr.Audio(
            sources=["microphone"],
            type='numpy',
            label="Speak to Ask"
        )
        audio_output = gr.Audio(
            label="Audio Response",
            type="filepath",
            autoplay=True,
            interactive=False
        )
    
    # Submit button to process the audio input
    submit_btn = gr.Button("Submit")
    submit_btn.click(
        fn=transcribe_and_respond,
        inputs=audio_input,
        outputs=[audio_output, gr.Textbox(label="Transcription")]
    )

    # Clear state interaction
    gr.Button("Clear State").click(
        fn=clear_transcription_state,
        outputs=[audio_output, gr.Textbox(label="Transcription")],
        api_name="api_clean_state"
    )

# Launch the Gradio interface
demo.launch(show_error=True, share=True)