Spaces:
Runtime error
Runtime error
File size: 7,075 Bytes
7f3430b c71d159 165cb65 cc3ca63 74d7618 165cb65 193ef9a 92b0167 193ef9a c71d159 92b0167 c71d159 165cb65 c71d159 7702656 165cb65 fb3074d 7702656 680dd01 165cb65 193ef9a 35593b5 61ae7dd 35593b5 165cb65 35593b5 165cb65 61ae7dd 193ef9a 165cb65 61ae7dd 193ef9a 165cb65 61ae7dd 35593b5 165cb65 2eda2b6 165cb65 193ef9a c689665 165cb65 193ef9a a51d4fa 35593b5 28374c4 934e44a 28374c4 193ef9a 28374c4 61ae7dd 193ef9a 28374c4 934e44a c71d159 61ae7dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import os
import logging
import requests
import tempfile
import torch
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_community.graphs import Neo4jGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from typing import List
import time
# Neo4j Setup
graph = Neo4jGraph(
url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Define entity extraction and retrieval functions
class Entities(BaseModel):
names: List[str] = Field(
..., description="All the person, organization, or business entities that appear in the text"
)
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "
}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
logging.debug(f"Audio saved to {audio_path}")
return audio_path # Return audio path for automatic playback
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
return_timestamps=True
)
# Function to handle audio input, transcribe, fetch from Neo4j, and generate audio response
def transcribe_and_respond(audio):
if audio is None:
logging.error("No audio provided.")
return None, "No audio provided."
sr, y = audio
y = np.array(y).astype(np.float32)
# Normalize the audio array
max_abs_y = np.max(np.abs(y))
if max_abs_y > 0:
y = y / max_abs_y
# Prepare input_features for Whisper model
input_features = processor(y, sampling_rate=sr, return_tensors="pt").input_features
# Transcribe the audio using Whisper with English language setting
result = pipe_asr({"input_features": input_features, "language": "en"}, return_timestamps=False)
question = result.get("text", "")
# Log the transcribed text for debugging
logging.debug(f"Transcribed text: {question}")
# Retrieve information from Neo4j
response_text = structured_retriever(question) if question else "I didn't understand the question."
# Convert the response to audio using Eleven Labs TTS
audio_path = generate_audio_elevenlabs(response_text) if response_text else None
# Ensure a valid audio path is returned
if audio_path and os.path.exists(audio_path):
logging.debug(f"Generated audio file path: {audio_path}")
else:
logging.error("Failed to generate audio or save audio to file.")
audio_path = None
return audio_path, response_text
# Function to clear the transcription state
def clear_transcription_state():
return None, None
# Define the Gradio interface with only audio input and output
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
with gr.Row():
audio_input = gr.Audio(
sources=["microphone"],
type='numpy',
label="Speak to Ask"
)
audio_output = gr.Audio(
label="Audio Response",
type="filepath",
autoplay=True,
interactive=False
)
# Submit button to process the audio input
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=transcribe_and_respond,
inputs=audio_input,
outputs=[audio_output, gr.Textbox(label="Transcription")]
)
# Clear state interaction
gr.Button("Clear State").click(
fn=clear_transcription_state,
outputs=[audio_output, gr.Textbox(label="Transcription")],
api_name="api_clean_state"
)
# Launch the Gradio interface
demo.launch(show_error=True, share=True) |