Spaces:
Runtime error
Runtime error
File size: 7,859 Bytes
7f3430b c71d159 193ef9a 8527f42 193ef9a 8527f42 193ef9a 8527f42 193ef9a 8527f42 7827ab9 8527f42 92b0167 8527f42 c71d159 92b0167 c71d159 165cb65 c71d159 8527f42 c71d159 8527f42 7702656 8527f42 7702656 165cb65 8527f42 7702656 8527f42 165cb65 8527f42 61ae7dd 8527f42 165cb65 8527f42 2eda2b6 8527f42 c689665 8527f42 28374c4 934e44a 8527f42 28374c4 934e44a 8527f42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
from typing import List, Tuple
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
RunnableBranch,
RunnableLambda,
RunnablePassthrough,
RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import requests
import tempfile
from langchain.memory import ConversationBufferWindowMemory
import time
import logging
from langchain.chains import ConversationChain
import torch
import torchaudio
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
import numpy as np
import threading
# Setup conversational memory
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Setup Neo4j connection
graph = Neo4jGraph(
url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Define entity extraction and retrieval functions
class Entities(BaseModel):
names: List[str] = Field(
..., description="All the person, organization, or business entities that appear in the text"
)
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "
}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
# Setup logging to a file to capture debug information
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
def retriever_neo4j(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data: {structured_data}")
return structured_data
# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
RunnableParallel(
{
"context": RunnableLambda(lambda x: retriever_neo4j(x["question"])),
"question": RunnablePassthrough(),
}
)
| ChatPromptTemplate.from_template("Answer: {context} Question: {question}")
| chat_model
| StrOutputParser()
)
# Define the function to get the response
def get_response(question):
try:
return chain_neo4j.invoke({"question": question})
except Exception as e:
return f"Error: {str(e)}"
# Define the function to clear input and output
def clear_fields():
return [], "", None
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
logging.debug(f"Audio saved to {audio_path}")
return audio_path # Return audio path for automatic playback
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Function to handle voice to voice conversation
def handle_voice_to_voice(chat_history, question):
response = get_response(question)
audio_path = generate_audio_elevenlabs(response)
chat_history.append(("[Voice Input]", "[Voice Response]"))
return chat_history, "", audio_path
# Function to transcribe audio input
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
if y is None or len(y) == 0:
return stream, "", None
y = y.astype(np.float32)
max_abs_y = np.max(np.abs(y))
if max_abs_y > 0:
y = y / max_abs_y
if stream is not None and len(stream) > 0:
stream = np.concatenate([stream, y])
else:
stream = y
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
threading.Thread(target=auto_reset_state).start()
return stream, full_text, full_text
# Define the Gradio interface
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
mode_selection = gr.Radio(
choices=["Normal Chatbot", "Voice to Voice Conversation"],
label="Mode Selection",
value="Normal Chatbot"
)
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1, label="Speak to Ask")
submit_voice_btn = gr.Button("Submit Voice")
audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
# Interactions for Submit Voice Button
submit_voice_btn.click(
fn=handle_voice_to_voice,
inputs=[chatbot, question_input],
outputs=[chatbot, question_input, audio_output],
api_name="api_voice_to_voice_translation"
)
# Speech-to-Text functionality
state = gr.State()
audio_input.stream(
transcribe_function,
inputs=[state, audio_input],
outputs=[state, question_input],
api_name="api_voice_to_text"
)
demo.launch(show_error=True, share=True)
|